annotate dsp/tonal/ChangeDetectionFunction.cpp @ 0:d7116e3183f8

* Queen Mary C++ DSP library
author cannam
date Wed, 05 Apr 2006 17:35:59 +0000
parents
children 980b1a3b9cbe
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file copyright 2006 Martin Gasser.
cannam@0 8 All rights reserved.
cannam@0 9 */
cannam@0 10
cannam@0 11 #include "ChangeDetectionFunction.h"
cannam@0 12
cannam@0 13 #ifndef PI
cannam@0 14 #define PI (3.14159265358979232846)
cannam@0 15 #endif
cannam@0 16
cannam@0 17
cannam@0 18
cannam@0 19 ChangeDetectionFunction::ChangeDetectionFunction(ChangeDFConfig config) :
cannam@0 20 m_dFilterSigma(0.0), m_iFilterWidth(0)
cannam@0 21 {
cannam@0 22 setFilterWidth(config.smoothingWidth);
cannam@0 23 }
cannam@0 24
cannam@0 25 ChangeDetectionFunction::~ChangeDetectionFunction()
cannam@0 26 {
cannam@0 27 }
cannam@0 28
cannam@0 29 void ChangeDetectionFunction::setFilterWidth(const int iWidth)
cannam@0 30 {
cannam@0 31 m_iFilterWidth = iWidth*2+1;
cannam@0 32
cannam@0 33 // it is assumed that the gaussian is 0 outside of +/- FWHM
cannam@0 34 // => filter width = 2*FWHM = 2*2.3548*sigma
cannam@0 35 m_dFilterSigma = double(m_iFilterWidth) / double(2*2.3548);
cannam@0 36 m_vaGaussian.resize(m_iFilterWidth);
cannam@0 37
cannam@0 38 double dScale = 1.0 / (m_dFilterSigma*sqrt(2*PI));
cannam@0 39
cannam@0 40 for (int x = -(m_iFilterWidth-1)/2; x <= (m_iFilterWidth-1)/2; x++)
cannam@0 41 {
cannam@0 42 double w = dScale * std::exp ( -(x*x)/(2*m_dFilterSigma*m_dFilterSigma) );
cannam@0 43 m_vaGaussian[x + (m_iFilterWidth-1)/2] = w;
cannam@0 44 }
cannam@0 45
cannam@0 46 #ifdef DEBUG_CHANGE_DETECTION_FUNCTION
cannam@0 47 std::cout << "Filter sigma: " << m_dFilterSigma << std::endl;
cannam@0 48 std::cout << "Filter width: " << m_iFilterWidth << std::endl;
cannam@0 49 #endif
cannam@0 50 }
cannam@0 51
cannam@0 52
cannam@0 53 ChangeDistance ChangeDetectionFunction::process(const TCSGram& rTCSGram)
cannam@0 54 {
cannam@0 55 ChangeDistance retVal;
cannam@0 56 retVal.resize(rTCSGram.getSize(), 0.0);
cannam@0 57
cannam@0 58 TCSGram smoothedTCSGram;
cannam@0 59
cannam@0 60 for (int iPosition = 0; iPosition < rTCSGram.getSize(); iPosition++)
cannam@0 61 {
cannam@0 62 int iSkipLower = 0;
cannam@0 63
cannam@0 64 int iLowerPos = iPosition - (m_iFilterWidth-1)/2;
cannam@0 65 int iUpperPos = iPosition + (m_iFilterWidth-1)/2;
cannam@0 66
cannam@0 67 if (iLowerPos < 0)
cannam@0 68 {
cannam@0 69 iSkipLower = -iLowerPos;
cannam@0 70 iLowerPos = 0;
cannam@0 71 }
cannam@0 72
cannam@0 73 if (iUpperPos >= rTCSGram.getSize())
cannam@0 74 {
cannam@0 75 int iMaxIndex = rTCSGram.getSize() - 1;
cannam@0 76 iUpperPos = iMaxIndex;
cannam@0 77 }
cannam@0 78
cannam@0 79 TCSVector smoothedVector;
cannam@0 80
cannam@0 81 // for every bin of the vector, calculate the smoothed value
cannam@0 82 for (int iPC = 0; iPC < 6; iPC++)
cannam@0 83 {
cannam@0 84 size_t j = 0;
cannam@0 85 double dSmoothedValue = 0.0;
cannam@0 86 TCSVector rCV;
cannam@0 87
cannam@0 88 for (int i = iLowerPos; i <= iUpperPos; i++)
cannam@0 89 {
cannam@0 90 rTCSGram.getTCSVector(i, rCV);
cannam@0 91 dSmoothedValue += m_vaGaussian[iSkipLower + j++] * rCV[iPC];
cannam@0 92 }
cannam@0 93
cannam@0 94 smoothedVector[iPC] = dSmoothedValue;
cannam@0 95 }
cannam@0 96
cannam@0 97 smoothedTCSGram.addTCSVector(smoothedVector);
cannam@0 98 }
cannam@0 99
cannam@0 100 for (int iPosition = 0; iPosition < rTCSGram.getSize(); iPosition++)
cannam@0 101 {
cannam@0 102 /*
cannam@0 103 TODO: calculate a confidence measure for the current estimation
cannam@0 104 if the current estimate is not confident enough, look further into the future/the past
cannam@0 105 e.g., High frequency content, zero crossing rate, spectral flatness
cannam@0 106 */
cannam@0 107
cannam@0 108 TCSVector nextTCS;
cannam@0 109 TCSVector previousTCS;
cannam@0 110
cannam@0 111 int iWindow = 1;
cannam@0 112
cannam@0 113 // while (previousTCS.magnitude() < 0.1 && (iPosition-iWindow) > 0)
cannam@0 114 {
cannam@0 115 smoothedTCSGram.getTCSVector(iPosition-iWindow, previousTCS);
cannam@0 116 // std::cout << previousTCS.magnitude() << std::endl;
cannam@0 117 iWindow++;
cannam@0 118 }
cannam@0 119
cannam@0 120 iWindow = 1;
cannam@0 121
cannam@0 122 // while (nextTCS.magnitude() < 0.1 && (iPosition+iWindow) < (rTCSGram.getSize()-1) )
cannam@0 123 {
cannam@0 124 smoothedTCSGram.getTCSVector(iPosition+iWindow, nextTCS);
cannam@0 125 iWindow++;
cannam@0 126 }
cannam@0 127
cannam@0 128 double distance = 0.0;
cannam@0 129 // Euclidean distance
cannam@0 130 for (size_t j = 0; j < 6; j++)
cannam@0 131 {
cannam@0 132 distance += std::pow(nextTCS[j] - previousTCS[j], 2.0);
cannam@0 133 }
cannam@0 134
cannam@0 135 retVal[iPosition] = std::pow(distance, 0.5);
cannam@0 136 }
cannam@0 137
cannam@0 138 return retVal;
cannam@0 139 }