c@244
|
1 /*
|
c@244
|
2 * hmm.c
|
c@244
|
3 * soundbite
|
c@244
|
4 *
|
c@244
|
5 * Created by Mark Levy on 12/02/2006.
|
c@244
|
6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved.
|
c@244
|
7 *
|
c@244
|
8 */
|
c@244
|
9
|
c@244
|
10 #include <stdio.h>
|
c@244
|
11 #include <math.h>
|
c@244
|
12 #include <stdlib.h>
|
c@244
|
13 #include <float.h>
|
c@244
|
14 #include <time.h> /* to seed random number generator */
|
c@269
|
15
|
c@244
|
16 #include <clapack.h> /* LAPACK for matrix inversion */
|
c@269
|
17
|
c@304
|
18 #include "maths/nan-inf.h"
|
c@304
|
19
|
c@269
|
20 #ifdef ATLAS_ORDER
|
c@269
|
21 #define HAVE_ATLAS 1
|
c@269
|
22 #endif
|
c@269
|
23
|
c@269
|
24 #ifdef HAVE_ATLAS
|
c@269
|
25 // Using ATLAS C interface to LAPACK
|
c@269
|
26 #define dgetrf_(m, n, a, lda, ipiv, info) \
|
c@269
|
27 clapack_dgetrf(CblasColMajor, *m, *n, a, *lda, ipiv)
|
c@269
|
28 #define dgetri_(n, a, lda, ipiv, work, lwork, info) \
|
c@269
|
29 clapack_dgetri(CblasColMajor, *n, a, *lda, ipiv)
|
c@269
|
30 #endif
|
c@269
|
31
|
c@244
|
32 #ifdef _MAC_OS_X
|
c@244
|
33 #include <vecLib/cblas.h>
|
c@244
|
34 #else
|
c@244
|
35 #include <cblas.h> /* BLAS for matrix multiplication */
|
c@244
|
36 #endif
|
c@244
|
37
|
c@244
|
38 #include "hmm.h"
|
c@244
|
39
|
c@244
|
40 model_t* hmm_init(double** x, int T, int L, int N)
|
c@244
|
41 {
|
c@244
|
42 int i, j, d, e, t;
|
c@244
|
43 double s, ss;
|
c@244
|
44
|
c@244
|
45 model_t* model;
|
c@244
|
46 model = (model_t*) malloc(sizeof(model_t));
|
c@244
|
47 model->N = N;
|
c@244
|
48 model->L = L;
|
c@244
|
49 model->p0 = (double*) malloc(N*sizeof(double));
|
c@244
|
50 model->a = (double**) malloc(N*sizeof(double*));
|
c@244
|
51 model->mu = (double**) malloc(N*sizeof(double*));
|
c@244
|
52 for (i = 0; i < N; i++)
|
c@244
|
53 {
|
c@244
|
54 model->a[i] = (double*) malloc(N*sizeof(double));
|
c@244
|
55 model->mu[i] = (double*) malloc(L*sizeof(double));
|
c@244
|
56 }
|
c@244
|
57 model->cov = (double**) malloc(L*sizeof(double*));
|
c@244
|
58 for (i = 0; i < L; i++)
|
c@244
|
59 model->cov[i] = (double*) malloc(L*sizeof(double));
|
c@244
|
60
|
c@244
|
61 srand(time(0));
|
c@244
|
62 double* global_mean = (double*) malloc(L*sizeof(double));
|
c@244
|
63
|
c@244
|
64 /* find global mean */
|
c@244
|
65 for (d = 0; d < L; d++)
|
c@244
|
66 {
|
c@244
|
67 global_mean[d] = 0;
|
c@244
|
68 for (t = 0; t < T; t++)
|
c@244
|
69 global_mean[d] += x[t][d];
|
c@244
|
70 global_mean[d] /= T;
|
c@244
|
71 }
|
c@244
|
72
|
c@244
|
73 /* calculate global diagonal covariance */
|
c@244
|
74 for (d = 0; d < L; d++)
|
c@244
|
75 {
|
c@244
|
76 for (e = 0; e < L; e++)
|
c@244
|
77 model->cov[d][e] = 0;
|
c@244
|
78 for (t = 0; t < T; t++)
|
c@244
|
79 model->cov[d][d] += (x[t][d] - global_mean[d]) * (x[t][d] - global_mean[d]);
|
c@244
|
80 model->cov[d][d] /= T-1;
|
c@244
|
81 }
|
c@244
|
82
|
c@244
|
83 /* set all means close to global mean */
|
c@244
|
84 for (i = 0; i < N; i++)
|
c@244
|
85 {
|
c@244
|
86 for (d = 0; d < L; d++)
|
c@244
|
87 {
|
c@244
|
88 /* add some random noise related to covariance */
|
c@244
|
89 /* ideally the random number would be Gaussian(0,1), as a hack we make it uniform on [-0.25,0.25] */
|
c@244
|
90 model->mu[i][d] = global_mean[d] + (0.5 * rand() / (double) RAND_MAX - 0.25) * sqrt(model->cov[d][d]);
|
c@244
|
91 }
|
c@244
|
92 }
|
c@244
|
93
|
c@244
|
94 /* random intial and transition probs */
|
c@244
|
95 s = 0;
|
c@244
|
96 for (i = 0; i < N; i++)
|
c@244
|
97 {
|
c@244
|
98 model->p0[i] = 1 + rand() / (double) RAND_MAX;
|
c@244
|
99 s += model->p0[i];
|
c@244
|
100 ss = 0;
|
c@244
|
101 for (j = 0; j < N; j++)
|
c@244
|
102 {
|
c@244
|
103 model->a[i][j] = 1 + rand() / (double) RAND_MAX;
|
c@244
|
104 ss += model->a[i][j];
|
c@244
|
105 }
|
c@244
|
106 for (j = 0; j < N; j++)
|
c@244
|
107 {
|
c@244
|
108 model->a[i][j] /= ss;
|
c@244
|
109 }
|
c@244
|
110 }
|
c@244
|
111 for (i = 0; i < N; i++)
|
c@244
|
112 model->p0[i] /= s;
|
c@244
|
113
|
c@244
|
114 free(global_mean);
|
c@244
|
115
|
c@244
|
116 return model;
|
c@244
|
117 }
|
c@244
|
118
|
c@244
|
119 void hmm_close(model_t* model)
|
c@244
|
120 {
|
c@244
|
121 int i;
|
c@244
|
122
|
c@244
|
123 for (i = 0; i < model->N; i++)
|
c@244
|
124 {
|
c@244
|
125 free(model->a[i]);
|
c@244
|
126 free(model->mu[i]);
|
c@244
|
127 }
|
c@244
|
128 free(model->a);
|
c@244
|
129 free(model->mu);
|
c@244
|
130 for (i = 0; i < model->L; i++)
|
c@244
|
131 free(model->cov[i]);
|
c@244
|
132 free(model->cov);
|
c@244
|
133 free(model);
|
c@244
|
134 }
|
c@244
|
135
|
c@244
|
136 void hmm_train(double** x, int T, model_t* model)
|
c@244
|
137 {
|
c@244
|
138 int i, t;
|
c@244
|
139 double loglik; /* overall log-likelihood at each iteration */
|
c@244
|
140
|
c@244
|
141 int N = model->N;
|
c@244
|
142 int L = model->L;
|
c@244
|
143 double* p0 = model->p0;
|
c@244
|
144 double** a = model->a;
|
c@244
|
145 double** mu = model->mu;
|
c@244
|
146 double** cov = model->cov;
|
c@244
|
147
|
c@244
|
148 /* allocate memory */
|
c@244
|
149 double** gamma = (double**) malloc(T*sizeof(double*));
|
c@244
|
150 double*** xi = (double***) malloc(T*sizeof(double**));
|
c@244
|
151 for (t = 0; t < T; t++)
|
c@244
|
152 {
|
c@244
|
153 gamma[t] = (double*) malloc(N*sizeof(double));
|
c@244
|
154 xi[t] = (double**) malloc(N*sizeof(double*));
|
c@244
|
155 for (i = 0; i < N; i++)
|
c@244
|
156 xi[t][i] = (double*) malloc(N*sizeof(double));
|
c@244
|
157 }
|
c@244
|
158
|
c@244
|
159 /* temporary memory */
|
c@244
|
160 double* gauss_y = (double*) malloc(L*sizeof(double));
|
c@244
|
161 double* gauss_z = (double*) malloc(L*sizeof(double));
|
c@244
|
162
|
c@244
|
163 /* obs probs P(j|{x}) */
|
c@244
|
164 double** b = (double**) malloc(T*sizeof(double*));
|
c@244
|
165 for (t = 0; t < T; t++)
|
c@244
|
166 b[t] = (double*) malloc(N*sizeof(double));
|
c@244
|
167
|
c@244
|
168 /* inverse covariance and its determinant */
|
c@244
|
169 double** icov = (double**) malloc(L*sizeof(double*));
|
c@244
|
170 for (i = 0; i < L; i++)
|
c@244
|
171 icov[i] = (double*) malloc(L*sizeof(double));
|
c@244
|
172 double detcov;
|
c@244
|
173
|
c@244
|
174 double thresh = 0.0001;
|
c@244
|
175 int niter = 50;
|
c@244
|
176 int iter = 0;
|
c@244
|
177 double loglik1, loglik2;
|
c@255
|
178 int foundnan = 0;
|
c@255
|
179
|
c@255
|
180 while (iter < niter && !foundnan && !(iter > 1 && (loglik - loglik1) < thresh * (loglik1 - loglik2)))
|
c@244
|
181 {
|
c@244
|
182 ++iter;
|
c@283
|
183 /*
|
c@244
|
184 fprintf(stderr, "calculating obsprobs...\n");
|
c@244
|
185 fflush(stderr);
|
c@283
|
186 */
|
c@244
|
187 /* precalculate obs probs */
|
c@244
|
188 invert(cov, L, icov, &detcov);
|
c@244
|
189
|
c@244
|
190 for (t = 0; t < T; t++)
|
c@244
|
191 {
|
c@244
|
192 //int allzero = 1;
|
c@244
|
193 for (i = 0; i < N; i++)
|
c@244
|
194 {
|
c@244
|
195 b[t][i] = exp(loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z));
|
c@244
|
196
|
c@244
|
197 //if (b[t][i] != 0)
|
c@244
|
198 // allzero = 0;
|
c@244
|
199 }
|
c@244
|
200 /*
|
c@244
|
201 if (allzero)
|
c@244
|
202 {
|
c@244
|
203 printf("all the b[t][i] were zero for t = %d, correcting...\n", t);
|
c@244
|
204 for (i = 0; i < N; i++)
|
c@244
|
205 {
|
c@244
|
206 b[t][i] = 0.00001;
|
c@244
|
207 }
|
c@244
|
208 }
|
c@244
|
209 */
|
c@244
|
210 }
|
c@283
|
211 /*
|
c@244
|
212 fprintf(stderr, "forwards-backwards...\n");
|
c@244
|
213 fflush(stderr);
|
c@283
|
214 */
|
c@244
|
215 forward_backwards(xi, gamma, &loglik, &loglik1, &loglik2, iter, N, T, p0, a, b);
|
c@283
|
216 /*
|
c@244
|
217 fprintf(stderr, "iteration %d: loglik = %f\n", iter, loglik);
|
c@244
|
218 fprintf(stderr, "re-estimation...\n");
|
c@244
|
219 fflush(stderr);
|
c@283
|
220 */
|
c@304
|
221 if (ISNAN(loglik)) {
|
c@255
|
222 foundnan = 1;
|
c@255
|
223 continue;
|
c@255
|
224 }
|
c@244
|
225
|
c@244
|
226 baum_welch(p0, a, mu, cov, N, T, L, x, xi, gamma);
|
c@244
|
227
|
c@244
|
228 /*
|
c@244
|
229 printf("a:\n");
|
c@244
|
230 for (i = 0; i < model->N; i++)
|
c@244
|
231 {
|
c@244
|
232 for (j = 0; j < model->N; j++)
|
c@244
|
233 printf("%f ", model->a[i][j]);
|
c@244
|
234 printf("\n");
|
c@244
|
235 }
|
c@244
|
236 printf("\n\n");
|
c@244
|
237 */
|
c@244
|
238 //hmm_print(model);
|
c@244
|
239 }
|
c@244
|
240
|
c@244
|
241 /* deallocate memory */
|
c@244
|
242 for (t = 0; t < T; t++)
|
c@244
|
243 {
|
c@244
|
244 free(gamma[t]);
|
c@244
|
245 free(b[t]);
|
c@244
|
246 for (i = 0; i < N; i++)
|
c@244
|
247 free(xi[t][i]);
|
c@244
|
248 free(xi[t]);
|
c@244
|
249 }
|
c@244
|
250 free(gamma);
|
c@244
|
251 free(xi);
|
c@244
|
252 free(b);
|
c@244
|
253
|
c@244
|
254 for (i = 0; i < L; i++)
|
c@244
|
255 free(icov[i]);
|
c@244
|
256 free(icov);
|
c@244
|
257
|
c@244
|
258 free(gauss_y);
|
c@244
|
259 free(gauss_z);
|
c@244
|
260 }
|
c@244
|
261
|
c@244
|
262 void mlss_reestimate(double* p0, double** a, double** mu, double** cov, int N, int T, int L, int* q, double** x)
|
c@244
|
263 {
|
c@244
|
264 /* fit a single Gaussian to observations in each state */
|
c@244
|
265
|
c@244
|
266 /* calculate the mean observation in each state */
|
c@244
|
267
|
c@244
|
268 /* calculate the overall covariance */
|
c@244
|
269
|
c@244
|
270 /* count transitions */
|
c@244
|
271
|
c@244
|
272 /* estimate initial probs from transitions (???) */
|
c@244
|
273 }
|
c@244
|
274
|
c@244
|
275 void baum_welch(double* p0, double** a, double** mu, double** cov, int N, int T, int L, double** x, double*** xi, double** gamma)
|
c@244
|
276 {
|
c@244
|
277 int i, j, t;
|
c@244
|
278
|
c@244
|
279 double* sum_gamma = (double*) malloc(N*sizeof(double));
|
c@244
|
280
|
c@244
|
281 /* temporary memory */
|
c@244
|
282 double* u = (double*) malloc(L*L*sizeof(double));
|
c@244
|
283 double* yy = (double*) malloc(T*L*sizeof(double));
|
c@244
|
284 double* yy2 = (double*) malloc(T*L*sizeof(double));
|
c@244
|
285
|
c@244
|
286 /* re-estimate transition probs */
|
c@244
|
287 for (i = 0; i < N; i++)
|
c@244
|
288 {
|
c@244
|
289 sum_gamma[i] = 0;
|
c@244
|
290 for (t = 0; t < T-1; t++)
|
c@244
|
291 sum_gamma[i] += gamma[t][i];
|
c@244
|
292 }
|
c@244
|
293
|
c@244
|
294 for (i = 0; i < N; i++)
|
c@244
|
295 {
|
c@244
|
296 if (sum_gamma[i] == 0)
|
c@244
|
297 {
|
c@283
|
298 /* fprintf(stderr, "sum_gamma[%d] was zero...\n", i); */
|
c@244
|
299 }
|
c@244
|
300 //double s = 0;
|
c@244
|
301 for (j = 0; j < N; j++)
|
c@244
|
302 {
|
c@244
|
303 a[i][j] = 0;
|
c@255
|
304 if (sum_gamma[i] == 0.) continue;
|
c@244
|
305 for (t = 0; t < T-1; t++)
|
c@244
|
306 a[i][j] += xi[t][i][j];
|
c@244
|
307 //s += a[i][j];
|
c@244
|
308 a[i][j] /= sum_gamma[i];
|
c@244
|
309 }
|
c@244
|
310 /*
|
c@244
|
311 for (j = 0; j < N; j++)
|
c@244
|
312 {
|
c@244
|
313 a[i][j] /= s;
|
c@244
|
314 }
|
c@244
|
315 */
|
c@244
|
316 }
|
c@244
|
317
|
c@244
|
318 /* NB: now we need to sum gamma over all t */
|
c@244
|
319 for (i = 0; i < N; i++)
|
c@244
|
320 sum_gamma[i] += gamma[T-1][i];
|
c@244
|
321
|
c@244
|
322 /* re-estimate initial probs */
|
c@244
|
323 for (i = 0; i < N; i++)
|
c@244
|
324 p0[i] = gamma[0][i];
|
c@244
|
325
|
c@244
|
326 /* re-estimate covariance */
|
c@244
|
327 int d, e;
|
c@244
|
328 double sum_sum_gamma = 0;
|
c@244
|
329 for (i = 0; i < N; i++)
|
c@244
|
330 sum_sum_gamma += sum_gamma[i];
|
c@244
|
331
|
c@244
|
332 /*
|
c@244
|
333 for (d = 0; d < L; d++)
|
c@244
|
334 {
|
c@244
|
335 for (e = d; e < L; e++)
|
c@244
|
336 {
|
c@244
|
337 cov[d][e] = 0;
|
c@244
|
338 for (t = 0; t < T; t++)
|
c@244
|
339 for (j = 0; j < N; j++)
|
c@244
|
340 cov[d][e] += gamma[t][j] * (x[t][d] - mu[j][d]) * (x[t][e] - mu[j][e]);
|
c@244
|
341
|
c@244
|
342 cov[d][e] /= sum_sum_gamma;
|
c@244
|
343
|
c@304
|
344 if (ISNAN(cov[d][e]))
|
c@244
|
345 {
|
c@244
|
346 printf("cov[%d][%d] was nan\n", d, e);
|
c@244
|
347 for (j = 0; j < N; j++)
|
c@244
|
348 for (i = 0; i < L; i++)
|
c@304
|
349 if (ISNAN(mu[j][i]))
|
c@244
|
350 printf("mu[%d][%d] was nan\n", j, i);
|
c@244
|
351 for (t = 0; t < T; t++)
|
c@244
|
352 for (j = 0; j < N; j++)
|
c@304
|
353 if (ISNAN(gamma[t][j]))
|
c@244
|
354 printf("gamma[%d][%d] was nan\n", t, j);
|
c@244
|
355 exit(-1);
|
c@244
|
356 }
|
c@244
|
357 }
|
c@244
|
358 }
|
c@244
|
359 for (d = 0; d < L; d++)
|
c@244
|
360 for (e = 0; e < d; e++)
|
c@244
|
361 cov[d][e] = cov[e][d];
|
c@244
|
362 */
|
c@244
|
363
|
c@244
|
364 /* using BLAS */
|
c@244
|
365 for (d = 0; d < L; d++)
|
c@244
|
366 for (e = 0; e < L; e++)
|
c@244
|
367 cov[d][e] = 0;
|
c@244
|
368
|
c@244
|
369 for (j = 0; j < N; j++)
|
c@244
|
370 {
|
c@244
|
371 for (d = 0; d < L; d++)
|
c@244
|
372 for (t = 0; t < T; t++)
|
c@244
|
373 {
|
c@244
|
374 yy[d*T+t] = x[t][d] - mu[j][d];
|
c@244
|
375 yy2[d*T+t] = gamma[t][j] * (x[t][d] - mu[j][d]);
|
c@244
|
376 }
|
c@244
|
377
|
c@244
|
378 cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, L, L, T, 1.0, yy, T, yy2, T, 0, u, L);
|
c@244
|
379
|
c@244
|
380 for (e = 0; e < L; e++)
|
c@244
|
381 for (d = 0; d < L; d++)
|
c@244
|
382 cov[d][e] += u[e*L+d];
|
c@244
|
383 }
|
c@244
|
384
|
c@244
|
385 for (d = 0; d < L; d++)
|
c@244
|
386 for (e = 0; e < L; e++)
|
c@244
|
387 cov[d][e] /= T; /* sum_sum_gamma; */
|
c@244
|
388
|
c@244
|
389 //printf("sum_sum_gamma = %f\n", sum_sum_gamma); /* fine, = T IS THIS ALWAYS TRUE with pooled cov?? */
|
c@244
|
390
|
c@244
|
391 /* re-estimate means */
|
c@244
|
392 for (j = 0; j < N; j++)
|
c@244
|
393 {
|
c@244
|
394 for (d = 0; d < L; d++)
|
c@244
|
395 {
|
c@244
|
396 mu[j][d] = 0;
|
c@244
|
397 for (t = 0; t < T; t++)
|
c@244
|
398 mu[j][d] += gamma[t][j] * x[t][d];
|
c@244
|
399 mu[j][d] /= sum_gamma[j];
|
c@244
|
400 }
|
c@244
|
401 }
|
c@244
|
402
|
c@244
|
403 /* deallocate memory */
|
c@244
|
404 free(sum_gamma);
|
c@244
|
405 free(yy);
|
c@244
|
406 free(yy2);
|
c@244
|
407 free(u);
|
c@244
|
408 }
|
c@244
|
409
|
c@244
|
410 void forward_backwards(double*** xi, double** gamma, double* loglik, double* loglik1, double* loglik2, int iter, int N, int T, double* p0, double** a, double** b)
|
c@244
|
411 {
|
c@244
|
412 /* forwards-backwards with scaling */
|
c@244
|
413 int i, j, t;
|
c@244
|
414
|
c@244
|
415 double** alpha = (double**) malloc(T*sizeof(double*));
|
c@244
|
416 double** beta = (double**) malloc(T*sizeof(double*));
|
c@244
|
417 for (t = 0; t < T; t++)
|
c@244
|
418 {
|
c@244
|
419 alpha[t] = (double*) malloc(N*sizeof(double));
|
c@244
|
420 beta[t] = (double*) malloc(N*sizeof(double));
|
c@244
|
421 }
|
c@244
|
422
|
c@244
|
423 /* scaling coefficients */
|
c@244
|
424 double* c = (double*) malloc(T*sizeof(double));
|
c@244
|
425
|
c@244
|
426 /* calculate forward probs and scale coefficients */
|
c@244
|
427 c[0] = 0;
|
c@244
|
428 for (i = 0; i < N; i++)
|
c@244
|
429 {
|
c@244
|
430 alpha[0][i] = p0[i] * b[0][i];
|
c@244
|
431 c[0] += alpha[0][i];
|
c@244
|
432
|
c@244
|
433 //printf("p0[%d] = %f, b[0][%d] = %f\n", i, p0[i], i, b[0][i]);
|
c@244
|
434 }
|
c@244
|
435 c[0] = 1 / c[0];
|
c@244
|
436 for (i = 0; i < N; i++)
|
c@244
|
437 {
|
c@244
|
438 alpha[0][i] *= c[0];
|
c@244
|
439
|
c@244
|
440 //printf("alpha[0][%d] = %f\n", i, alpha[0][i]); /* OK agrees with Matlab */
|
c@244
|
441 }
|
c@244
|
442
|
c@244
|
443 *loglik1 = *loglik;
|
c@244
|
444 *loglik = -log(c[0]);
|
c@244
|
445 if (iter == 2)
|
c@244
|
446 *loglik2 = *loglik;
|
c@244
|
447
|
c@244
|
448 for (t = 1; t < T; t++)
|
c@244
|
449 {
|
c@244
|
450 c[t] = 0;
|
c@244
|
451 for (j = 0; j < N; j++)
|
c@244
|
452 {
|
c@244
|
453 alpha[t][j] = 0;
|
c@244
|
454 for (i = 0; i < N; i++)
|
c@244
|
455 alpha[t][j] += alpha[t-1][i] * a[i][j];
|
c@244
|
456 alpha[t][j] *= b[t][j];
|
c@244
|
457
|
c@244
|
458 c[t] += alpha[t][j];
|
c@244
|
459 }
|
c@244
|
460
|
c@244
|
461 /*
|
c@244
|
462 if (c[t] == 0)
|
c@244
|
463 {
|
c@244
|
464 printf("c[%d] = 0, going to blow up so exiting\n", t);
|
c@244
|
465 for (i = 0; i < N; i++)
|
c@244
|
466 if (b[t][i] == 0)
|
c@244
|
467 fprintf(stderr, "b[%d][%d] was zero\n", t, i);
|
c@244
|
468 fprintf(stderr, "x[t] was \n");
|
c@244
|
469 for (i = 0; i < L; i++)
|
c@244
|
470 fprintf(stderr, "%f ", x[t][i]);
|
c@244
|
471 fprintf(stderr, "\n\n");
|
c@244
|
472 exit(-1);
|
c@244
|
473 }
|
c@244
|
474 */
|
c@244
|
475
|
c@244
|
476 c[t] = 1 / c[t];
|
c@244
|
477 for (j = 0; j < N; j++)
|
c@244
|
478 alpha[t][j] *= c[t];
|
c@244
|
479
|
c@244
|
480 //printf("c[%d] = %e\n", t, c[t]);
|
c@244
|
481
|
c@244
|
482 *loglik -= log(c[t]);
|
c@244
|
483 }
|
c@244
|
484
|
c@244
|
485 /* calculate backwards probs using same coefficients */
|
c@244
|
486 for (i = 0; i < N; i++)
|
c@244
|
487 beta[T-1][i] = 1;
|
c@244
|
488 t = T - 1;
|
c@244
|
489 while (1)
|
c@244
|
490 {
|
c@244
|
491 for (i = 0; i < N; i++)
|
c@244
|
492 beta[t][i] *= c[t];
|
c@244
|
493
|
c@244
|
494 if (t == 0)
|
c@244
|
495 break;
|
c@244
|
496
|
c@244
|
497 for (i = 0; i < N; i++)
|
c@244
|
498 {
|
c@244
|
499 beta[t-1][i] = 0;
|
c@244
|
500 for (j = 0; j < N; j++)
|
c@244
|
501 beta[t-1][i] += a[i][j] * b[t][j] * beta[t][j];
|
c@244
|
502 }
|
c@244
|
503
|
c@244
|
504 t--;
|
c@244
|
505 }
|
c@244
|
506
|
c@244
|
507 /*
|
c@244
|
508 printf("alpha:\n");
|
c@244
|
509 for (t = 0; t < T; t++)
|
c@244
|
510 {
|
c@244
|
511 for (i = 0; i < N; i++)
|
c@244
|
512 printf("%4.4e\t\t", alpha[t][i]);
|
c@244
|
513 printf("\n");
|
c@244
|
514 }
|
c@244
|
515 printf("\n\n");printf("beta:\n");
|
c@244
|
516 for (t = 0; t < T; t++)
|
c@244
|
517 {
|
c@244
|
518 for (i = 0; i < N; i++)
|
c@244
|
519 printf("%4.4e\t\t", beta[t][i]);
|
c@244
|
520 printf("\n");
|
c@244
|
521 }
|
c@244
|
522 printf("\n\n");
|
c@244
|
523 */
|
c@244
|
524
|
c@244
|
525 /* calculate posterior probs */
|
c@244
|
526 double tot;
|
c@244
|
527 for (t = 0; t < T; t++)
|
c@244
|
528 {
|
c@244
|
529 tot = 0;
|
c@244
|
530 for (i = 0; i < N; i++)
|
c@244
|
531 {
|
c@244
|
532 gamma[t][i] = alpha[t][i] * beta[t][i];
|
c@244
|
533 tot += gamma[t][i];
|
c@244
|
534 }
|
c@244
|
535 for (i = 0; i < N; i++)
|
c@244
|
536 {
|
c@244
|
537 gamma[t][i] /= tot;
|
c@244
|
538
|
c@244
|
539 //printf("gamma[%d][%d] = %f\n", t, i, gamma[t][i]);
|
c@244
|
540 }
|
c@244
|
541 }
|
c@244
|
542
|
c@244
|
543 for (t = 0; t < T-1; t++)
|
c@244
|
544 {
|
c@244
|
545 tot = 0;
|
c@244
|
546 for (i = 0; i < N; i++)
|
c@244
|
547 {
|
c@244
|
548 for (j = 0; j < N; j++)
|
c@244
|
549 {
|
c@244
|
550 xi[t][i][j] = alpha[t][i] * a[i][j] * b[t+1][j] * beta[t+1][j];
|
c@244
|
551 tot += xi[t][i][j];
|
c@244
|
552 }
|
c@244
|
553 }
|
c@244
|
554 for (i = 0; i < N; i++)
|
c@244
|
555 for (j = 0; j < N; j++)
|
c@244
|
556 xi[t][i][j] /= tot;
|
c@244
|
557 }
|
c@244
|
558
|
c@244
|
559 /*
|
c@244
|
560 // CHECK - fine
|
c@244
|
561 // gamma[t][i] = \sum_j{xi[t][i][j]}
|
c@244
|
562 tot = 0;
|
c@244
|
563 for (j = 0; j < N; j++)
|
c@244
|
564 tot += xi[3][1][j];
|
c@244
|
565 printf("gamma[3][1] = %f, sum_j(xi[3][1][j]) = %f\n", gamma[3][1], tot);
|
c@244
|
566 */
|
c@244
|
567
|
c@244
|
568 for (t = 0; t < T; t++)
|
c@244
|
569 {
|
c@244
|
570 free(alpha[t]);
|
c@244
|
571 free(beta[t]);
|
c@244
|
572 }
|
c@244
|
573 free(alpha);
|
c@244
|
574 free(beta);
|
c@244
|
575 free(c);
|
c@244
|
576 }
|
c@244
|
577
|
c@244
|
578 void viterbi_decode(double** x, int T, model_t* model, int* q)
|
c@244
|
579 {
|
c@244
|
580 int i, j, t;
|
c@244
|
581 double max;
|
c@273
|
582 int havemax;
|
c@244
|
583
|
c@244
|
584 int N = model->N;
|
c@244
|
585 int L = model->L;
|
c@244
|
586 double* p0 = model->p0;
|
c@244
|
587 double** a = model->a;
|
c@244
|
588 double** mu = model->mu;
|
c@244
|
589 double** cov = model->cov;
|
c@244
|
590
|
c@244
|
591 /* inverse covariance and its determinant */
|
c@244
|
592 double** icov = (double**) malloc(L*sizeof(double*));
|
c@244
|
593 for (i = 0; i < L; i++)
|
c@244
|
594 icov[i] = (double*) malloc(L*sizeof(double));
|
c@244
|
595 double detcov;
|
c@244
|
596
|
c@244
|
597 double** logb = (double**) malloc(T*sizeof(double*));
|
c@244
|
598 double** phi = (double**) malloc(T*sizeof(double*));
|
c@244
|
599 int** psi = (int**) malloc(T*sizeof(int*));
|
c@244
|
600 for (t = 0; t < T; t++)
|
c@244
|
601 {
|
c@244
|
602 logb[t] = (double*) malloc(N*sizeof(double));
|
c@244
|
603 phi[t] = (double*) malloc(N*sizeof(double));
|
c@244
|
604 psi[t] = (int*) malloc(N*sizeof(int));
|
c@244
|
605 }
|
c@244
|
606
|
c@244
|
607 /* temporary memory */
|
c@244
|
608 double* gauss_y = (double*) malloc(L*sizeof(double));
|
c@244
|
609 double* gauss_z = (double*) malloc(L*sizeof(double));
|
c@244
|
610
|
c@244
|
611 /* calculate observation logprobs */
|
c@244
|
612 invert(cov, L, icov, &detcov);
|
c@244
|
613 for (t = 0; t < T; t++)
|
c@244
|
614 for (i = 0; i < N; i++)
|
c@244
|
615 logb[t][i] = loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z);
|
c@244
|
616
|
c@244
|
617 /* initialise */
|
c@244
|
618 for (i = 0; i < N; i++)
|
c@244
|
619 {
|
c@244
|
620 phi[0][i] = log(p0[i]) + logb[0][i];
|
c@244
|
621 psi[0][i] = 0;
|
c@244
|
622 }
|
c@244
|
623
|
c@244
|
624 for (t = 1; t < T; t++)
|
c@244
|
625 {
|
c@244
|
626 for (j = 0; j < N; j++)
|
c@244
|
627 {
|
c@273
|
628 max = -1000000;
|
c@273
|
629 havemax = 0;
|
c@273
|
630
|
c@244
|
631 psi[t][j] = 0;
|
c@244
|
632 for (i = 0; i < N; i++)
|
c@244
|
633 {
|
c@273
|
634 if (phi[t-1][i] + log(a[i][j]) > max || !havemax)
|
c@244
|
635 {
|
c@244
|
636 max = phi[t-1][i] + log(a[i][j]);
|
c@244
|
637 phi[t][j] = max + logb[t][j];
|
c@244
|
638 psi[t][j] = i;
|
c@273
|
639 havemax = 1;
|
c@244
|
640 }
|
c@244
|
641 }
|
c@244
|
642 }
|
c@244
|
643 }
|
c@244
|
644
|
c@244
|
645 /* find maximising state at time T-1 */
|
c@244
|
646 max = phi[T-1][0];
|
c@244
|
647 q[T-1] = 0;
|
c@244
|
648 for (i = 1; i < N; i++)
|
c@244
|
649 {
|
c@244
|
650 if (phi[T-1][i] > max)
|
c@244
|
651 {
|
c@244
|
652 max = phi[T-1][i];
|
c@244
|
653 q[T-1] = i;
|
c@244
|
654 }
|
c@244
|
655 }
|
c@244
|
656
|
c@244
|
657
|
c@244
|
658 /* track back */
|
c@244
|
659 t = T - 2;
|
c@244
|
660 while (t >= 0)
|
c@244
|
661 {
|
c@244
|
662 q[t] = psi[t+1][q[t+1]];
|
c@244
|
663 t--;
|
c@244
|
664 }
|
c@244
|
665
|
c@244
|
666 /* de-allocate memory */
|
c@244
|
667 for (i = 0; i < L; i++)
|
c@244
|
668 free(icov[i]);
|
c@244
|
669 free(icov);
|
c@244
|
670 for (t = 0; t < T; t++)
|
c@244
|
671 {
|
c@244
|
672 free(logb[t]);
|
c@244
|
673 free(phi[t]);
|
c@244
|
674 free(psi[t]);
|
c@244
|
675 }
|
c@244
|
676 free(logb);
|
c@244
|
677 free(phi);
|
c@244
|
678 free(psi);
|
c@244
|
679
|
c@244
|
680 free(gauss_y);
|
c@244
|
681 free(gauss_z);
|
c@244
|
682 }
|
c@244
|
683
|
c@244
|
684 /* invert matrix and calculate determinant using LAPACK */
|
c@244
|
685 void invert(double** cov, int L, double** icov, double* detcov)
|
c@244
|
686 {
|
c@244
|
687 /* copy square matrix into a vector in column-major order */
|
c@244
|
688 double* a = (double*) malloc(L*L*sizeof(double));
|
c@244
|
689 int i, j;
|
c@244
|
690 for(j=0; j < L; j++)
|
c@244
|
691 for (i=0; i < L; i++)
|
c@244
|
692 a[j*L+i] = cov[i][j];
|
c@244
|
693
|
c@269
|
694 int M = (int) L;
|
c@269
|
695 int* ipiv = (int *) malloc(L*L*sizeof(int));
|
c@269
|
696 int ret;
|
c@244
|
697
|
c@244
|
698 /* LU decomposition */
|
c@244
|
699 ret = dgetrf_(&M, &M, a, &M, ipiv, &ret); /* ret should be zero, negative if cov is singular */
|
c@244
|
700 if (ret < 0)
|
c@244
|
701 {
|
c@244
|
702 fprintf(stderr, "Covariance matrix was singular, couldn't invert\n");
|
c@244
|
703 exit(-1);
|
c@244
|
704 }
|
c@244
|
705
|
c@244
|
706 /* find determinant */
|
c@244
|
707 double det = 1;
|
c@244
|
708 for(i = 0; i < L; i++)
|
c@244
|
709 det *= a[i*L+i];
|
c@244
|
710 // TODO: get this to work!!! If detcov < 0 then cov is bad anyway...
|
c@244
|
711 /*
|
c@244
|
712 int sign = 1;
|
c@244
|
713 for (i = 0; i < L; i++)
|
c@244
|
714 if (ipiv[i] != i)
|
c@244
|
715 sign = -sign;
|
c@244
|
716 det *= sign;
|
c@244
|
717 */
|
c@244
|
718 if (det < 0)
|
c@244
|
719 det = -det;
|
c@244
|
720 *detcov = det;
|
c@244
|
721
|
c@244
|
722 /* allocate required working storage */
|
c@269
|
723 #ifndef HAVE_ATLAS
|
c@269
|
724 int lwork = -1;
|
c@269
|
725 double lwbest = 0.0;
|
c@244
|
726 dgetri_(&M, a, &M, ipiv, &lwbest, &lwork, &ret);
|
c@269
|
727 lwork = (int) lwbest;
|
c@244
|
728 double* work = (double*) malloc(lwork*sizeof(double));
|
c@269
|
729 #endif
|
c@244
|
730
|
c@244
|
731 /* find inverse */
|
c@244
|
732 dgetri_(&M, a, &M, ipiv, work, &lwork, &ret);
|
c@269
|
733
|
c@244
|
734 for(j=0; j < L; j++)
|
c@244
|
735 for (i=0; i < L; i++)
|
c@244
|
736 icov[i][j] = a[j*L+i];
|
c@244
|
737
|
c@269
|
738 #ifndef HAVE_ATLAS
|
c@244
|
739 free(work);
|
c@269
|
740 #endif
|
c@244
|
741 free(a);
|
c@244
|
742 }
|
c@244
|
743
|
c@244
|
744 /* probability of multivariate Gaussian given mean, inverse and determinant of covariance */
|
c@244
|
745 double gauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
|
c@244
|
746 {
|
c@244
|
747 int i, j;
|
c@244
|
748 double s = 0;
|
c@244
|
749 for (i = 0; i < L; i++)
|
c@244
|
750 y[i] = x[i] - mu[i];
|
c@244
|
751 for (i = 0; i < L; i++)
|
c@244
|
752 {
|
c@244
|
753 //z[i] = 0;
|
c@244
|
754 //for (j = 0; j < L; j++)
|
c@244
|
755 // z[i] += icov[i][j] * y[j];
|
c@244
|
756 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
|
c@244
|
757 }
|
c@244
|
758 s = cblas_ddot(L, z, 1, y, 1);
|
c@244
|
759 //for (i = 0; i < L; i++)
|
c@244
|
760 // s += z[i] * y[i];
|
c@244
|
761
|
c@244
|
762 return exp(-s/2.0) / (pow(2*PI, L/2.0) * sqrt(detcov));
|
c@244
|
763 }
|
c@244
|
764
|
c@244
|
765 /* log probability of multivariate Gaussian given mean, inverse and determinant of covariance */
|
c@244
|
766 double loggauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
|
c@244
|
767 {
|
c@244
|
768 int i, j;
|
c@244
|
769 double s = 0;
|
c@244
|
770 double ret;
|
c@244
|
771 for (i = 0; i < L; i++)
|
c@244
|
772 y[i] = x[i] - mu[i];
|
c@244
|
773 for (i = 0; i < L; i++)
|
c@244
|
774 {
|
c@244
|
775 //z[i] = 0;
|
c@244
|
776 //for (j = 0; j < L; j++)
|
c@244
|
777 // z[i] += icov[i][j] * y[j];
|
c@244
|
778 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
|
c@244
|
779 }
|
c@244
|
780 s = cblas_ddot(L, z, 1, y, 1);
|
c@244
|
781 //for (i = 0; i < L; i++)
|
c@244
|
782 // s += z[i] * y[i];
|
c@244
|
783
|
c@244
|
784 ret = -0.5 * (s + L * log(2*PI) + log(detcov));
|
c@244
|
785
|
c@244
|
786 /*
|
c@244
|
787 // TEST
|
c@304
|
788 if (ISINF(ret) > 0)
|
c@244
|
789 printf("loggauss returning infinity\n");
|
c@304
|
790 if (ISINF(ret) < 0)
|
c@244
|
791 printf("loggauss returning -infinity\n");
|
c@304
|
792 if (ISNAN(ret))
|
c@244
|
793 printf("loggauss returning nan\n");
|
c@244
|
794 */
|
c@244
|
795
|
c@244
|
796 return ret;
|
c@244
|
797 }
|
c@244
|
798
|
c@244
|
799 void hmm_print(model_t* model)
|
c@244
|
800 {
|
c@244
|
801 int i, j;
|
c@244
|
802 printf("p0:\n");
|
c@244
|
803 for (i = 0; i < model->N; i++)
|
c@244
|
804 printf("%f ", model->p0[i]);
|
c@244
|
805 printf("\n\n");
|
c@244
|
806 printf("a:\n");
|
c@244
|
807 for (i = 0; i < model->N; i++)
|
c@244
|
808 {
|
c@244
|
809 for (j = 0; j < model->N; j++)
|
c@244
|
810 printf("%f ", model->a[i][j]);
|
c@244
|
811 printf("\n");
|
c@244
|
812 }
|
c@244
|
813 printf("\n\n");
|
c@244
|
814 printf("mu:\n");
|
c@244
|
815 for (i = 0; i < model->N; i++)
|
c@244
|
816 {
|
c@244
|
817 for (j = 0; j < model->L; j++)
|
c@244
|
818 printf("%f ", model->mu[i][j]);
|
c@244
|
819 printf("\n");
|
c@244
|
820 }
|
c@244
|
821 printf("\n\n");
|
c@244
|
822 printf("cov:\n");
|
c@244
|
823 for (i = 0; i < model->L; i++)
|
c@244
|
824 {
|
c@244
|
825 for (j = 0; j < model->L; j++)
|
c@244
|
826 printf("%f ", model->cov[i][j]);
|
c@244
|
827 printf("\n");
|
c@244
|
828 }
|
c@244
|
829 printf("\n\n");
|
c@244
|
830 }
|
c@244
|
831
|
c@244
|
832
|