annotate hmm/hmm.c @ 244:f599563a4663

* reverting names to lower-case for C (as opposed to mixed-case for C++) -- this is how Mark L had it and he was probably right
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 09 Jan 2008 10:48:08 +0000
parents
children a251fb0de594
rev   line source
c@244 1 /*
c@244 2 * hmm.c
c@244 3 * soundbite
c@244 4 *
c@244 5 * Created by Mark Levy on 12/02/2006.
c@244 6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved.
c@244 7 *
c@244 8 */
c@244 9
c@244 10 #include <stdio.h>
c@244 11 #include <math.h>
c@244 12 #include <stdlib.h>
c@244 13 #include <float.h>
c@244 14 #include <time.h> /* to seed random number generator */
c@244 15 #include <clapack.h> /* LAPACK for matrix inversion */
c@244 16 #ifdef _MAC_OS_X
c@244 17 #include <vecLib/cblas.h>
c@244 18 #else
c@244 19 #include <cblas.h> /* BLAS for matrix multiplication */
c@244 20 #endif
c@244 21
c@244 22 #include "hmm.h"
c@244 23
c@244 24 model_t* hmm_init(double** x, int T, int L, int N)
c@244 25 {
c@244 26 int i, j, d, e, t;
c@244 27 double s, ss;
c@244 28
c@244 29 model_t* model;
c@244 30 model = (model_t*) malloc(sizeof(model_t));
c@244 31 model->N = N;
c@244 32 model->L = L;
c@244 33 model->p0 = (double*) malloc(N*sizeof(double));
c@244 34 model->a = (double**) malloc(N*sizeof(double*));
c@244 35 model->mu = (double**) malloc(N*sizeof(double*));
c@244 36 for (i = 0; i < N; i++)
c@244 37 {
c@244 38 model->a[i] = (double*) malloc(N*sizeof(double));
c@244 39 model->mu[i] = (double*) malloc(L*sizeof(double));
c@244 40 }
c@244 41 model->cov = (double**) malloc(L*sizeof(double*));
c@244 42 for (i = 0; i < L; i++)
c@244 43 model->cov[i] = (double*) malloc(L*sizeof(double));
c@244 44
c@244 45 srand(time(0));
c@244 46 double* global_mean = (double*) malloc(L*sizeof(double));
c@244 47
c@244 48 /* find global mean */
c@244 49 for (d = 0; d < L; d++)
c@244 50 {
c@244 51 global_mean[d] = 0;
c@244 52 for (t = 0; t < T; t++)
c@244 53 global_mean[d] += x[t][d];
c@244 54 global_mean[d] /= T;
c@244 55 }
c@244 56
c@244 57 /* calculate global diagonal covariance */
c@244 58 for (d = 0; d < L; d++)
c@244 59 {
c@244 60 for (e = 0; e < L; e++)
c@244 61 model->cov[d][e] = 0;
c@244 62 for (t = 0; t < T; t++)
c@244 63 model->cov[d][d] += (x[t][d] - global_mean[d]) * (x[t][d] - global_mean[d]);
c@244 64 model->cov[d][d] /= T-1;
c@244 65 }
c@244 66
c@244 67 /* set all means close to global mean */
c@244 68 for (i = 0; i < N; i++)
c@244 69 {
c@244 70 for (d = 0; d < L; d++)
c@244 71 {
c@244 72 /* add some random noise related to covariance */
c@244 73 /* ideally the random number would be Gaussian(0,1), as a hack we make it uniform on [-0.25,0.25] */
c@244 74 model->mu[i][d] = global_mean[d] + (0.5 * rand() / (double) RAND_MAX - 0.25) * sqrt(model->cov[d][d]);
c@244 75 }
c@244 76 }
c@244 77
c@244 78 /* random intial and transition probs */
c@244 79 s = 0;
c@244 80 for (i = 0; i < N; i++)
c@244 81 {
c@244 82 model->p0[i] = 1 + rand() / (double) RAND_MAX;
c@244 83 s += model->p0[i];
c@244 84 ss = 0;
c@244 85 for (j = 0; j < N; j++)
c@244 86 {
c@244 87 model->a[i][j] = 1 + rand() / (double) RAND_MAX;
c@244 88 ss += model->a[i][j];
c@244 89 }
c@244 90 for (j = 0; j < N; j++)
c@244 91 {
c@244 92 model->a[i][j] /= ss;
c@244 93 }
c@244 94 }
c@244 95 for (i = 0; i < N; i++)
c@244 96 model->p0[i] /= s;
c@244 97
c@244 98 free(global_mean);
c@244 99
c@244 100 return model;
c@244 101 }
c@244 102
c@244 103 void hmm_close(model_t* model)
c@244 104 {
c@244 105 int i;
c@244 106
c@244 107 for (i = 0; i < model->N; i++)
c@244 108 {
c@244 109 free(model->a[i]);
c@244 110 free(model->mu[i]);
c@244 111 }
c@244 112 free(model->a);
c@244 113 free(model->mu);
c@244 114 for (i = 0; i < model->L; i++)
c@244 115 free(model->cov[i]);
c@244 116 free(model->cov);
c@244 117 free(model);
c@244 118 }
c@244 119
c@244 120 void hmm_train(double** x, int T, model_t* model)
c@244 121 {
c@244 122 int i, t;
c@244 123 double loglik; /* overall log-likelihood at each iteration */
c@244 124
c@244 125 int N = model->N;
c@244 126 int L = model->L;
c@244 127 double* p0 = model->p0;
c@244 128 double** a = model->a;
c@244 129 double** mu = model->mu;
c@244 130 double** cov = model->cov;
c@244 131
c@244 132 /* allocate memory */
c@244 133 double** gamma = (double**) malloc(T*sizeof(double*));
c@244 134 double*** xi = (double***) malloc(T*sizeof(double**));
c@244 135 for (t = 0; t < T; t++)
c@244 136 {
c@244 137 gamma[t] = (double*) malloc(N*sizeof(double));
c@244 138 xi[t] = (double**) malloc(N*sizeof(double*));
c@244 139 for (i = 0; i < N; i++)
c@244 140 xi[t][i] = (double*) malloc(N*sizeof(double));
c@244 141 }
c@244 142
c@244 143 /* temporary memory */
c@244 144 double* gauss_y = (double*) malloc(L*sizeof(double));
c@244 145 double* gauss_z = (double*) malloc(L*sizeof(double));
c@244 146
c@244 147 /* obs probs P(j|{x}) */
c@244 148 double** b = (double**) malloc(T*sizeof(double*));
c@244 149 for (t = 0; t < T; t++)
c@244 150 b[t] = (double*) malloc(N*sizeof(double));
c@244 151
c@244 152 /* inverse covariance and its determinant */
c@244 153 double** icov = (double**) malloc(L*sizeof(double*));
c@244 154 for (i = 0; i < L; i++)
c@244 155 icov[i] = (double*) malloc(L*sizeof(double));
c@244 156 double detcov;
c@244 157
c@244 158 double thresh = 0.0001;
c@244 159 int niter = 50;
c@244 160 int iter = 0;
c@244 161 double loglik1, loglik2;
c@244 162 while(iter < niter && !(iter > 1 && (loglik - loglik1) < thresh * (loglik1 - loglik2)))
c@244 163 {
c@244 164 ++iter;
c@244 165
c@244 166 fprintf(stderr, "calculating obsprobs...\n");
c@244 167 fflush(stderr);
c@244 168
c@244 169 /* precalculate obs probs */
c@244 170 invert(cov, L, icov, &detcov);
c@244 171
c@244 172 for (t = 0; t < T; t++)
c@244 173 {
c@244 174 //int allzero = 1;
c@244 175 for (i = 0; i < N; i++)
c@244 176 {
c@244 177 b[t][i] = exp(loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z));
c@244 178
c@244 179 //if (b[t][i] != 0)
c@244 180 // allzero = 0;
c@244 181 }
c@244 182 /*
c@244 183 if (allzero)
c@244 184 {
c@244 185 printf("all the b[t][i] were zero for t = %d, correcting...\n", t);
c@244 186 for (i = 0; i < N; i++)
c@244 187 {
c@244 188 b[t][i] = 0.00001;
c@244 189 }
c@244 190 }
c@244 191 */
c@244 192 }
c@244 193
c@244 194 fprintf(stderr, "forwards-backwards...\n");
c@244 195 fflush(stderr);
c@244 196
c@244 197 forward_backwards(xi, gamma, &loglik, &loglik1, &loglik2, iter, N, T, p0, a, b);
c@244 198
c@244 199 fprintf(stderr, "iteration %d: loglik = %f\n", iter, loglik);
c@244 200 fprintf(stderr, "re-estimation...\n");
c@244 201 fflush(stderr);
c@244 202
c@244 203 baum_welch(p0, a, mu, cov, N, T, L, x, xi, gamma);
c@244 204
c@244 205 /*
c@244 206 printf("a:\n");
c@244 207 for (i = 0; i < model->N; i++)
c@244 208 {
c@244 209 for (j = 0; j < model->N; j++)
c@244 210 printf("%f ", model->a[i][j]);
c@244 211 printf("\n");
c@244 212 }
c@244 213 printf("\n\n");
c@244 214 */
c@244 215 //hmm_print(model);
c@244 216 }
c@244 217
c@244 218 /* deallocate memory */
c@244 219 for (t = 0; t < T; t++)
c@244 220 {
c@244 221 free(gamma[t]);
c@244 222 free(b[t]);
c@244 223 for (i = 0; i < N; i++)
c@244 224 free(xi[t][i]);
c@244 225 free(xi[t]);
c@244 226 }
c@244 227 free(gamma);
c@244 228 free(xi);
c@244 229 free(b);
c@244 230
c@244 231 for (i = 0; i < L; i++)
c@244 232 free(icov[i]);
c@244 233 free(icov);
c@244 234
c@244 235 free(gauss_y);
c@244 236 free(gauss_z);
c@244 237 }
c@244 238
c@244 239 void mlss_reestimate(double* p0, double** a, double** mu, double** cov, int N, int T, int L, int* q, double** x)
c@244 240 {
c@244 241 /* fit a single Gaussian to observations in each state */
c@244 242
c@244 243 /* calculate the mean observation in each state */
c@244 244
c@244 245 /* calculate the overall covariance */
c@244 246
c@244 247 /* count transitions */
c@244 248
c@244 249 /* estimate initial probs from transitions (???) */
c@244 250 }
c@244 251
c@244 252 void baum_welch(double* p0, double** a, double** mu, double** cov, int N, int T, int L, double** x, double*** xi, double** gamma)
c@244 253 {
c@244 254 int i, j, t;
c@244 255
c@244 256 double* sum_gamma = (double*) malloc(N*sizeof(double));
c@244 257
c@244 258 /* temporary memory */
c@244 259 double* u = (double*) malloc(L*L*sizeof(double));
c@244 260 double* yy = (double*) malloc(T*L*sizeof(double));
c@244 261 double* yy2 = (double*) malloc(T*L*sizeof(double));
c@244 262
c@244 263 /* re-estimate transition probs */
c@244 264 for (i = 0; i < N; i++)
c@244 265 {
c@244 266 sum_gamma[i] = 0;
c@244 267 for (t = 0; t < T-1; t++)
c@244 268 sum_gamma[i] += gamma[t][i];
c@244 269 }
c@244 270
c@244 271 for (i = 0; i < N; i++)
c@244 272 {
c@244 273 if (sum_gamma[i] == 0)
c@244 274 {
c@244 275 fprintf(stderr, "sum_gamma[%d] was zero...\n", i);
c@244 276 }
c@244 277 //double s = 0;
c@244 278 for (j = 0; j < N; j++)
c@244 279 {
c@244 280 a[i][j] = 0;
c@244 281 for (t = 0; t < T-1; t++)
c@244 282 a[i][j] += xi[t][i][j];
c@244 283 //s += a[i][j];
c@244 284 a[i][j] /= sum_gamma[i];
c@244 285 }
c@244 286 /*
c@244 287 for (j = 0; j < N; j++)
c@244 288 {
c@244 289 a[i][j] /= s;
c@244 290 }
c@244 291 */
c@244 292 }
c@244 293
c@244 294 /* NB: now we need to sum gamma over all t */
c@244 295 for (i = 0; i < N; i++)
c@244 296 sum_gamma[i] += gamma[T-1][i];
c@244 297
c@244 298 /* re-estimate initial probs */
c@244 299 for (i = 0; i < N; i++)
c@244 300 p0[i] = gamma[0][i];
c@244 301
c@244 302 /* re-estimate covariance */
c@244 303 int d, e;
c@244 304 double sum_sum_gamma = 0;
c@244 305 for (i = 0; i < N; i++)
c@244 306 sum_sum_gamma += sum_gamma[i];
c@244 307
c@244 308 /*
c@244 309 for (d = 0; d < L; d++)
c@244 310 {
c@244 311 for (e = d; e < L; e++)
c@244 312 {
c@244 313 cov[d][e] = 0;
c@244 314 for (t = 0; t < T; t++)
c@244 315 for (j = 0; j < N; j++)
c@244 316 cov[d][e] += gamma[t][j] * (x[t][d] - mu[j][d]) * (x[t][e] - mu[j][e]);
c@244 317
c@244 318 cov[d][e] /= sum_sum_gamma;
c@244 319
c@244 320 if (isnan(cov[d][e]))
c@244 321 {
c@244 322 printf("cov[%d][%d] was nan\n", d, e);
c@244 323 for (j = 0; j < N; j++)
c@244 324 for (i = 0; i < L; i++)
c@244 325 if (isnan(mu[j][i]))
c@244 326 printf("mu[%d][%d] was nan\n", j, i);
c@244 327 for (t = 0; t < T; t++)
c@244 328 for (j = 0; j < N; j++)
c@244 329 if (isnan(gamma[t][j]))
c@244 330 printf("gamma[%d][%d] was nan\n", t, j);
c@244 331 exit(-1);
c@244 332 }
c@244 333 }
c@244 334 }
c@244 335 for (d = 0; d < L; d++)
c@244 336 for (e = 0; e < d; e++)
c@244 337 cov[d][e] = cov[e][d];
c@244 338 */
c@244 339
c@244 340 /* using BLAS */
c@244 341 for (d = 0; d < L; d++)
c@244 342 for (e = 0; e < L; e++)
c@244 343 cov[d][e] = 0;
c@244 344
c@244 345 for (j = 0; j < N; j++)
c@244 346 {
c@244 347 for (d = 0; d < L; d++)
c@244 348 for (t = 0; t < T; t++)
c@244 349 {
c@244 350 yy[d*T+t] = x[t][d] - mu[j][d];
c@244 351 yy2[d*T+t] = gamma[t][j] * (x[t][d] - mu[j][d]);
c@244 352 }
c@244 353
c@244 354 cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, L, L, T, 1.0, yy, T, yy2, T, 0, u, L);
c@244 355
c@244 356 for (e = 0; e < L; e++)
c@244 357 for (d = 0; d < L; d++)
c@244 358 cov[d][e] += u[e*L+d];
c@244 359 }
c@244 360
c@244 361 for (d = 0; d < L; d++)
c@244 362 for (e = 0; e < L; e++)
c@244 363 cov[d][e] /= T; /* sum_sum_gamma; */
c@244 364
c@244 365 //printf("sum_sum_gamma = %f\n", sum_sum_gamma); /* fine, = T IS THIS ALWAYS TRUE with pooled cov?? */
c@244 366
c@244 367 /* re-estimate means */
c@244 368 for (j = 0; j < N; j++)
c@244 369 {
c@244 370 for (d = 0; d < L; d++)
c@244 371 {
c@244 372 mu[j][d] = 0;
c@244 373 for (t = 0; t < T; t++)
c@244 374 mu[j][d] += gamma[t][j] * x[t][d];
c@244 375 mu[j][d] /= sum_gamma[j];
c@244 376 }
c@244 377 }
c@244 378
c@244 379 /* deallocate memory */
c@244 380 free(sum_gamma);
c@244 381 free(yy);
c@244 382 free(yy2);
c@244 383 free(u);
c@244 384 }
c@244 385
c@244 386 void forward_backwards(double*** xi, double** gamma, double* loglik, double* loglik1, double* loglik2, int iter, int N, int T, double* p0, double** a, double** b)
c@244 387 {
c@244 388 /* forwards-backwards with scaling */
c@244 389 int i, j, t;
c@244 390
c@244 391 double** alpha = (double**) malloc(T*sizeof(double*));
c@244 392 double** beta = (double**) malloc(T*sizeof(double*));
c@244 393 for (t = 0; t < T; t++)
c@244 394 {
c@244 395 alpha[t] = (double*) malloc(N*sizeof(double));
c@244 396 beta[t] = (double*) malloc(N*sizeof(double));
c@244 397 }
c@244 398
c@244 399 /* scaling coefficients */
c@244 400 double* c = (double*) malloc(T*sizeof(double));
c@244 401
c@244 402 /* calculate forward probs and scale coefficients */
c@244 403 c[0] = 0;
c@244 404 for (i = 0; i < N; i++)
c@244 405 {
c@244 406 alpha[0][i] = p0[i] * b[0][i];
c@244 407 c[0] += alpha[0][i];
c@244 408
c@244 409 //printf("p0[%d] = %f, b[0][%d] = %f\n", i, p0[i], i, b[0][i]);
c@244 410 }
c@244 411 c[0] = 1 / c[0];
c@244 412 for (i = 0; i < N; i++)
c@244 413 {
c@244 414 alpha[0][i] *= c[0];
c@244 415
c@244 416 //printf("alpha[0][%d] = %f\n", i, alpha[0][i]); /* OK agrees with Matlab */
c@244 417 }
c@244 418
c@244 419 *loglik1 = *loglik;
c@244 420 *loglik = -log(c[0]);
c@244 421 if (iter == 2)
c@244 422 *loglik2 = *loglik;
c@244 423
c@244 424 for (t = 1; t < T; t++)
c@244 425 {
c@244 426 c[t] = 0;
c@244 427 for (j = 0; j < N; j++)
c@244 428 {
c@244 429 alpha[t][j] = 0;
c@244 430 for (i = 0; i < N; i++)
c@244 431 alpha[t][j] += alpha[t-1][i] * a[i][j];
c@244 432 alpha[t][j] *= b[t][j];
c@244 433
c@244 434 c[t] += alpha[t][j];
c@244 435 }
c@244 436
c@244 437 /*
c@244 438 if (c[t] == 0)
c@244 439 {
c@244 440 printf("c[%d] = 0, going to blow up so exiting\n", t);
c@244 441 for (i = 0; i < N; i++)
c@244 442 if (b[t][i] == 0)
c@244 443 fprintf(stderr, "b[%d][%d] was zero\n", t, i);
c@244 444 fprintf(stderr, "x[t] was \n");
c@244 445 for (i = 0; i < L; i++)
c@244 446 fprintf(stderr, "%f ", x[t][i]);
c@244 447 fprintf(stderr, "\n\n");
c@244 448 exit(-1);
c@244 449 }
c@244 450 */
c@244 451
c@244 452 c[t] = 1 / c[t];
c@244 453 for (j = 0; j < N; j++)
c@244 454 alpha[t][j] *= c[t];
c@244 455
c@244 456 //printf("c[%d] = %e\n", t, c[t]);
c@244 457
c@244 458 *loglik -= log(c[t]);
c@244 459 }
c@244 460
c@244 461 /* calculate backwards probs using same coefficients */
c@244 462 for (i = 0; i < N; i++)
c@244 463 beta[T-1][i] = 1;
c@244 464 t = T - 1;
c@244 465 while (1)
c@244 466 {
c@244 467 for (i = 0; i < N; i++)
c@244 468 beta[t][i] *= c[t];
c@244 469
c@244 470 if (t == 0)
c@244 471 break;
c@244 472
c@244 473 for (i = 0; i < N; i++)
c@244 474 {
c@244 475 beta[t-1][i] = 0;
c@244 476 for (j = 0; j < N; j++)
c@244 477 beta[t-1][i] += a[i][j] * b[t][j] * beta[t][j];
c@244 478 }
c@244 479
c@244 480 t--;
c@244 481 }
c@244 482
c@244 483 /*
c@244 484 printf("alpha:\n");
c@244 485 for (t = 0; t < T; t++)
c@244 486 {
c@244 487 for (i = 0; i < N; i++)
c@244 488 printf("%4.4e\t\t", alpha[t][i]);
c@244 489 printf("\n");
c@244 490 }
c@244 491 printf("\n\n");printf("beta:\n");
c@244 492 for (t = 0; t < T; t++)
c@244 493 {
c@244 494 for (i = 0; i < N; i++)
c@244 495 printf("%4.4e\t\t", beta[t][i]);
c@244 496 printf("\n");
c@244 497 }
c@244 498 printf("\n\n");
c@244 499 */
c@244 500
c@244 501 /* calculate posterior probs */
c@244 502 double tot;
c@244 503 for (t = 0; t < T; t++)
c@244 504 {
c@244 505 tot = 0;
c@244 506 for (i = 0; i < N; i++)
c@244 507 {
c@244 508 gamma[t][i] = alpha[t][i] * beta[t][i];
c@244 509 tot += gamma[t][i];
c@244 510 }
c@244 511 for (i = 0; i < N; i++)
c@244 512 {
c@244 513 gamma[t][i] /= tot;
c@244 514
c@244 515 //printf("gamma[%d][%d] = %f\n", t, i, gamma[t][i]);
c@244 516 }
c@244 517 }
c@244 518
c@244 519 for (t = 0; t < T-1; t++)
c@244 520 {
c@244 521 tot = 0;
c@244 522 for (i = 0; i < N; i++)
c@244 523 {
c@244 524 for (j = 0; j < N; j++)
c@244 525 {
c@244 526 xi[t][i][j] = alpha[t][i] * a[i][j] * b[t+1][j] * beta[t+1][j];
c@244 527 tot += xi[t][i][j];
c@244 528 }
c@244 529 }
c@244 530 for (i = 0; i < N; i++)
c@244 531 for (j = 0; j < N; j++)
c@244 532 xi[t][i][j] /= tot;
c@244 533 }
c@244 534
c@244 535 /*
c@244 536 // CHECK - fine
c@244 537 // gamma[t][i] = \sum_j{xi[t][i][j]}
c@244 538 tot = 0;
c@244 539 for (j = 0; j < N; j++)
c@244 540 tot += xi[3][1][j];
c@244 541 printf("gamma[3][1] = %f, sum_j(xi[3][1][j]) = %f\n", gamma[3][1], tot);
c@244 542 */
c@244 543
c@244 544 for (t = 0; t < T; t++)
c@244 545 {
c@244 546 free(alpha[t]);
c@244 547 free(beta[t]);
c@244 548 }
c@244 549 free(alpha);
c@244 550 free(beta);
c@244 551 free(c);
c@244 552 }
c@244 553
c@244 554 void viterbi_decode(double** x, int T, model_t* model, int* q)
c@244 555 {
c@244 556 int i, j, t;
c@244 557 double max;
c@244 558
c@244 559 int N = model->N;
c@244 560 int L = model->L;
c@244 561 double* p0 = model->p0;
c@244 562 double** a = model->a;
c@244 563 double** mu = model->mu;
c@244 564 double** cov = model->cov;
c@244 565
c@244 566 /* inverse covariance and its determinant */
c@244 567 double** icov = (double**) malloc(L*sizeof(double*));
c@244 568 for (i = 0; i < L; i++)
c@244 569 icov[i] = (double*) malloc(L*sizeof(double));
c@244 570 double detcov;
c@244 571
c@244 572 double** logb = (double**) malloc(T*sizeof(double*));
c@244 573 double** phi = (double**) malloc(T*sizeof(double*));
c@244 574 int** psi = (int**) malloc(T*sizeof(int*));
c@244 575 for (t = 0; t < T; t++)
c@244 576 {
c@244 577 logb[t] = (double*) malloc(N*sizeof(double));
c@244 578 phi[t] = (double*) malloc(N*sizeof(double));
c@244 579 psi[t] = (int*) malloc(N*sizeof(int));
c@244 580 }
c@244 581
c@244 582 /* temporary memory */
c@244 583 double* gauss_y = (double*) malloc(L*sizeof(double));
c@244 584 double* gauss_z = (double*) malloc(L*sizeof(double));
c@244 585
c@244 586 /* calculate observation logprobs */
c@244 587 invert(cov, L, icov, &detcov);
c@244 588 for (t = 0; t < T; t++)
c@244 589 for (i = 0; i < N; i++)
c@244 590 logb[t][i] = loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z);
c@244 591
c@244 592 /* initialise */
c@244 593 for (i = 0; i < N; i++)
c@244 594 {
c@244 595 phi[0][i] = log(p0[i]) + logb[0][i];
c@244 596 psi[0][i] = 0;
c@244 597 }
c@244 598
c@244 599 for (t = 1; t < T; t++)
c@244 600 {
c@244 601 for (j = 0; j < N; j++)
c@244 602 {
c@244 603 max = -1000000; // TODO: what should this be?? = smallest possible sumlogprob
c@244 604 psi[t][j] = 0;
c@244 605 for (i = 0; i < N; i++)
c@244 606 {
c@244 607 if (phi[t-1][i] + log(a[i][j]) > max)
c@244 608 {
c@244 609 max = phi[t-1][i] + log(a[i][j]);
c@244 610 phi[t][j] = max + logb[t][j];
c@244 611 psi[t][j] = i;
c@244 612 }
c@244 613 }
c@244 614 }
c@244 615 }
c@244 616
c@244 617 /* find maximising state at time T-1 */
c@244 618 max = phi[T-1][0];
c@244 619 q[T-1] = 0;
c@244 620 for (i = 1; i < N; i++)
c@244 621 {
c@244 622 if (phi[T-1][i] > max)
c@244 623 {
c@244 624 max = phi[T-1][i];
c@244 625 q[T-1] = i;
c@244 626 }
c@244 627 }
c@244 628
c@244 629
c@244 630 /* track back */
c@244 631 t = T - 2;
c@244 632 while (t >= 0)
c@244 633 {
c@244 634 q[t] = psi[t+1][q[t+1]];
c@244 635 t--;
c@244 636 }
c@244 637
c@244 638 /* de-allocate memory */
c@244 639 for (i = 0; i < L; i++)
c@244 640 free(icov[i]);
c@244 641 free(icov);
c@244 642 for (t = 0; t < T; t++)
c@244 643 {
c@244 644 free(logb[t]);
c@244 645 free(phi[t]);
c@244 646 free(psi[t]);
c@244 647 }
c@244 648 free(logb);
c@244 649 free(phi);
c@244 650 free(psi);
c@244 651
c@244 652 free(gauss_y);
c@244 653 free(gauss_z);
c@244 654 }
c@244 655
c@244 656 /* invert matrix and calculate determinant using LAPACK */
c@244 657 void invert(double** cov, int L, double** icov, double* detcov)
c@244 658 {
c@244 659 /* copy square matrix into a vector in column-major order */
c@244 660 double* a = (double*) malloc(L*L*sizeof(double));
c@244 661 int i, j;
c@244 662 for(j=0; j < L; j++)
c@244 663 for (i=0; i < L; i++)
c@244 664 a[j*L+i] = cov[i][j];
c@244 665
c@244 666 long M = (long) L;
c@244 667 long* ipiv = (long*) malloc(L*L*sizeof(int));
c@244 668 long ret;
c@244 669
c@244 670 /* LU decomposition */
c@244 671 ret = dgetrf_(&M, &M, a, &M, ipiv, &ret); /* ret should be zero, negative if cov is singular */
c@244 672 if (ret < 0)
c@244 673 {
c@244 674 fprintf(stderr, "Covariance matrix was singular, couldn't invert\n");
c@244 675 exit(-1);
c@244 676 }
c@244 677
c@244 678 /* find determinant */
c@244 679 double det = 1;
c@244 680 for(i = 0; i < L; i++)
c@244 681 det *= a[i*L+i];
c@244 682 // TODO: get this to work!!! If detcov < 0 then cov is bad anyway...
c@244 683 /*
c@244 684 int sign = 1;
c@244 685 for (i = 0; i < L; i++)
c@244 686 if (ipiv[i] != i)
c@244 687 sign = -sign;
c@244 688 det *= sign;
c@244 689 */
c@244 690 if (det < 0)
c@244 691 det = -det;
c@244 692 *detcov = det;
c@244 693
c@244 694 /* allocate required working storage */
c@244 695 long lwork = -1;
c@244 696 double lwbest;
c@244 697 dgetri_(&M, a, &M, ipiv, &lwbest, &lwork, &ret);
c@244 698 lwork = (long) lwbest;
c@244 699 double* work = (double*) malloc(lwork*sizeof(double));
c@244 700
c@244 701 /* find inverse */
c@244 702 dgetri_(&M, a, &M, ipiv, work, &lwork, &ret);
c@244 703
c@244 704 for(j=0; j < L; j++)
c@244 705 for (i=0; i < L; i++)
c@244 706 icov[i][j] = a[j*L+i];
c@244 707
c@244 708 free(work);
c@244 709 free(a);
c@244 710 }
c@244 711
c@244 712 /* probability of multivariate Gaussian given mean, inverse and determinant of covariance */
c@244 713 double gauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
c@244 714 {
c@244 715 int i, j;
c@244 716 double s = 0;
c@244 717 for (i = 0; i < L; i++)
c@244 718 y[i] = x[i] - mu[i];
c@244 719 for (i = 0; i < L; i++)
c@244 720 {
c@244 721 //z[i] = 0;
c@244 722 //for (j = 0; j < L; j++)
c@244 723 // z[i] += icov[i][j] * y[j];
c@244 724 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
c@244 725 }
c@244 726 s = cblas_ddot(L, z, 1, y, 1);
c@244 727 //for (i = 0; i < L; i++)
c@244 728 // s += z[i] * y[i];
c@244 729
c@244 730 return exp(-s/2.0) / (pow(2*PI, L/2.0) * sqrt(detcov));
c@244 731 }
c@244 732
c@244 733 /* log probability of multivariate Gaussian given mean, inverse and determinant of covariance */
c@244 734 double loggauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
c@244 735 {
c@244 736 int i, j;
c@244 737 double s = 0;
c@244 738 double ret;
c@244 739 for (i = 0; i < L; i++)
c@244 740 y[i] = x[i] - mu[i];
c@244 741 for (i = 0; i < L; i++)
c@244 742 {
c@244 743 //z[i] = 0;
c@244 744 //for (j = 0; j < L; j++)
c@244 745 // z[i] += icov[i][j] * y[j];
c@244 746 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
c@244 747 }
c@244 748 s = cblas_ddot(L, z, 1, y, 1);
c@244 749 //for (i = 0; i < L; i++)
c@244 750 // s += z[i] * y[i];
c@244 751
c@244 752 ret = -0.5 * (s + L * log(2*PI) + log(detcov));
c@244 753
c@244 754 /*
c@244 755 // TEST
c@244 756 if (isinf(ret) > 0)
c@244 757 printf("loggauss returning infinity\n");
c@244 758 if (isinf(ret) < 0)
c@244 759 printf("loggauss returning -infinity\n");
c@244 760 if (isnan(ret))
c@244 761 printf("loggauss returning nan\n");
c@244 762 */
c@244 763
c@244 764 return ret;
c@244 765 }
c@244 766
c@244 767 void hmm_print(model_t* model)
c@244 768 {
c@244 769 int i, j;
c@244 770 printf("p0:\n");
c@244 771 for (i = 0; i < model->N; i++)
c@244 772 printf("%f ", model->p0[i]);
c@244 773 printf("\n\n");
c@244 774 printf("a:\n");
c@244 775 for (i = 0; i < model->N; i++)
c@244 776 {
c@244 777 for (j = 0; j < model->N; j++)
c@244 778 printf("%f ", model->a[i][j]);
c@244 779 printf("\n");
c@244 780 }
c@244 781 printf("\n\n");
c@244 782 printf("mu:\n");
c@244 783 for (i = 0; i < model->N; i++)
c@244 784 {
c@244 785 for (j = 0; j < model->L; j++)
c@244 786 printf("%f ", model->mu[i][j]);
c@244 787 printf("\n");
c@244 788 }
c@244 789 printf("\n\n");
c@244 790 printf("cov:\n");
c@244 791 for (i = 0; i < model->L; i++)
c@244 792 {
c@244 793 for (j = 0; j < model->L; j++)
c@244 794 printf("%f ", model->cov[i][j]);
c@244 795 printf("\n");
c@244 796 }
c@244 797 printf("\n\n");
c@244 798 }
c@244 799
c@244 800