cannam@54
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@54
|
2
|
cannam@54
|
3 /*
|
cannam@54
|
4 QM DSP Library
|
cannam@54
|
5
|
cannam@54
|
6 Centre for Digital Music, Queen Mary, University of London.
|
cannam@54
|
7 This file copyright 2008-2009 Matthew Davies and QMUL.
|
cannam@54
|
8 All rights reserved.
|
cannam@54
|
9 */
|
cannam@54
|
10
|
cannam@54
|
11 #include "DownBeat.h"
|
cannam@54
|
12
|
cannam@54
|
13 #include "maths/MathAliases.h"
|
cannam@54
|
14 #include "maths/MathUtilities.h"
|
cannam@55
|
15 #include "maths/KLDivergence.h"
|
cannam@54
|
16 #include "dsp/transforms/FFT.h"
|
cannam@54
|
17
|
cannam@54
|
18 #include <iostream>
|
cannam@54
|
19 #include <cstdlib>
|
cannam@54
|
20
|
cannam@54
|
21 DownBeat::DownBeat(float originalSampleRate,
|
cannam@54
|
22 size_t decimationFactor,
|
cannam@54
|
23 size_t dfIncrement) :
|
cannam@55
|
24 m_bpb(0),
|
cannam@54
|
25 m_rate(originalSampleRate),
|
cannam@54
|
26 m_factor(decimationFactor),
|
cannam@54
|
27 m_increment(dfIncrement),
|
cannam@54
|
28 m_decimator1(0),
|
cannam@54
|
29 m_decimator2(0),
|
cannam@54
|
30 m_buffer(0),
|
cannam@58
|
31 m_decbuf(0),
|
cannam@54
|
32 m_bufsiz(0),
|
cannam@54
|
33 m_buffill(0),
|
cannam@54
|
34 m_beatframesize(0),
|
cannam@54
|
35 m_beatframe(0)
|
cannam@54
|
36 {
|
cannam@54
|
37 // beat frame size is next power of two up from 1.3 seconds at the
|
cannam@54
|
38 // downsampled rate (happens to produce 4096 for 44100 or 48000 at
|
cannam@54
|
39 // 16x decimation, which is our expected normal situation)
|
cannam@55
|
40 m_beatframesize = MathUtilities::nextPowerOfTwo
|
cannam@55
|
41 (int((m_rate / decimationFactor) * 1.3));
|
cannam@57
|
42 // std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl;
|
cannam@54
|
43 m_beatframe = new double[m_beatframesize];
|
cannam@54
|
44 m_fftRealOut = new double[m_beatframesize];
|
cannam@54
|
45 m_fftImagOut = new double[m_beatframesize];
|
cannam@64
|
46 m_fft = new FFTReal(m_beatframesize);
|
cannam@54
|
47 }
|
cannam@54
|
48
|
cannam@54
|
49 DownBeat::~DownBeat()
|
cannam@54
|
50 {
|
cannam@54
|
51 delete m_decimator1;
|
cannam@54
|
52 delete m_decimator2;
|
cannam@54
|
53 if (m_buffer) free(m_buffer);
|
cannam@54
|
54 delete[] m_decbuf;
|
cannam@54
|
55 delete[] m_beatframe;
|
cannam@54
|
56 delete[] m_fftRealOut;
|
cannam@54
|
57 delete[] m_fftImagOut;
|
cannam@64
|
58 delete m_fft;
|
cannam@54
|
59 }
|
cannam@54
|
60
|
cannam@54
|
61 void
|
cannam@55
|
62 DownBeat::setBeatsPerBar(int bpb)
|
cannam@55
|
63 {
|
cannam@55
|
64 m_bpb = bpb;
|
cannam@55
|
65 }
|
cannam@55
|
66
|
cannam@55
|
67 void
|
cannam@54
|
68 DownBeat::makeDecimators()
|
cannam@54
|
69 {
|
cannam@58
|
70 // std::cerr << "m_factor = " << m_factor << std::endl;
|
cannam@54
|
71 if (m_factor < 2) return;
|
cannam@54
|
72 int highest = Decimator::getHighestSupportedFactor();
|
cannam@54
|
73 if (m_factor <= highest) {
|
cannam@54
|
74 m_decimator1 = new Decimator(m_increment, m_factor);
|
cannam@57
|
75 // std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl;
|
cannam@54
|
76 return;
|
cannam@54
|
77 }
|
cannam@54
|
78 m_decimator1 = new Decimator(m_increment, highest);
|
cannam@57
|
79 // std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl;
|
cannam@54
|
80 m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
|
cannam@57
|
81 // std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl;
|
cannam@55
|
82 m_decbuf = new float[m_increment / highest];
|
cannam@54
|
83 }
|
cannam@54
|
84
|
cannam@54
|
85 void
|
cannam@55
|
86 DownBeat::pushAudioBlock(const float *audio)
|
cannam@54
|
87 {
|
cannam@54
|
88 if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
|
cannam@54
|
89 if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
|
cannam@54
|
90 else m_bufsiz = m_bufsiz * 2;
|
cannam@54
|
91 if (!m_buffer) {
|
cannam@55
|
92 m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
|
cannam@54
|
93 } else {
|
cannam@57
|
94 // std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl;
|
cannam@55
|
95 m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
|
cannam@54
|
96 }
|
cannam@54
|
97 }
|
cannam@58
|
98 if (!m_decimator1 && m_factor > 1) makeDecimators();
|
cannam@58
|
99 // float rmsin = 0, rmsout = 0;
|
cannam@58
|
100 // for (int i = 0; i < m_increment; ++i) {
|
cannam@58
|
101 // rmsin += audio[i] * audio[i];
|
cannam@58
|
102 // }
|
cannam@54
|
103 if (m_decimator2) {
|
cannam@54
|
104 m_decimator1->process(audio, m_decbuf);
|
cannam@54
|
105 m_decimator2->process(m_decbuf, m_buffer + m_buffill);
|
cannam@58
|
106 } else if (m_decimator1) {
|
cannam@58
|
107 m_decimator1->process(audio, m_buffer + m_buffill);
|
cannam@54
|
108 } else {
|
cannam@58
|
109 // just copy across (m_factor is presumably 1)
|
cannam@58
|
110 for (int i = 0; i < m_increment; ++i) {
|
cannam@58
|
111 (m_buffer + m_buffill)[i] = audio[i];
|
cannam@58
|
112 }
|
cannam@54
|
113 }
|
cannam@58
|
114 // for (int i = 0; i < m_increment / m_factor; ++i) {
|
cannam@58
|
115 // rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i];
|
cannam@58
|
116 // }
|
cannam@57
|
117 // std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl;
|
cannam@54
|
118 m_buffill += m_increment / m_factor;
|
cannam@54
|
119 }
|
cannam@54
|
120
|
cannam@55
|
121 const float *
|
cannam@54
|
122 DownBeat::getBufferedAudio(size_t &length) const
|
cannam@54
|
123 {
|
cannam@54
|
124 length = m_buffill;
|
cannam@54
|
125 return m_buffer;
|
cannam@54
|
126 }
|
cannam@54
|
127
|
cannam@54
|
128 void
|
cannam@55
|
129 DownBeat::resetAudioBuffer()
|
cannam@55
|
130 {
|
cannam@55
|
131 if (m_buffer) free(m_buffer);
|
cannam@58
|
132 m_buffer = 0;
|
cannam@55
|
133 m_buffill = 0;
|
cannam@55
|
134 m_bufsiz = 0;
|
cannam@55
|
135 }
|
cannam@55
|
136
|
cannam@55
|
137 void
|
cannam@55
|
138 DownBeat::findDownBeats(const float *audio,
|
cannam@54
|
139 size_t audioLength,
|
cannam@54
|
140 const d_vec_t &beats,
|
cannam@54
|
141 i_vec_t &downbeats)
|
cannam@54
|
142 {
|
cannam@54
|
143 // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
|
cannam@54
|
144 // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
|
cannam@54
|
145 // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
|
cannam@54
|
146
|
cannam@54
|
147 // IMPLEMENTATION (MOSTLY) FOLLOWS:
|
cannam@54
|
148 // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
|
cannam@54
|
149 // EUSIPCO 2006, FLORENCE, ITALY
|
cannam@54
|
150
|
cannam@54
|
151 d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
|
cannam@54
|
152 d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
|
cannam@56
|
153
|
cannam@56
|
154 m_beatsd.clear();
|
cannam@54
|
155
|
cannam@54
|
156 if (audioLength == 0) return;
|
cannam@54
|
157
|
cannam@54
|
158 for (size_t i = 0; i + 1 < beats.size(); ++i) {
|
cannam@54
|
159
|
cannam@54
|
160 // Copy the extents of the current beat from downsampled array
|
cannam@54
|
161 // into beat frame buffer
|
cannam@54
|
162
|
cannam@54
|
163 size_t beatstart = (beats[i] * m_increment) / m_factor;
|
cannam@55
|
164 size_t beatend = (beats[i+1] * m_increment) / m_factor;
|
cannam@54
|
165 if (beatend >= audioLength) beatend = audioLength - 1;
|
cannam@54
|
166 if (beatend < beatstart) beatend = beatstart;
|
cannam@54
|
167 size_t beatlen = beatend - beatstart;
|
cannam@54
|
168
|
cannam@54
|
169 // Also apply a Hanning window to the beat frame buffer, sized
|
cannam@54
|
170 // to the beat extents rather than the frame size. (Because
|
cannam@54
|
171 // the size varies, it's easier to do this by hand than use
|
cannam@54
|
172 // our Window abstraction.)
|
cannam@54
|
173
|
cannam@58
|
174 // std::cerr << "beatlen = " << beatlen << std::endl;
|
cannam@58
|
175
|
cannam@58
|
176 // float rms = 0;
|
cannam@58
|
177 for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) {
|
cannam@54
|
178 double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
|
cannam@54
|
179 m_beatframe[j] = audio[beatstart + j] * mul;
|
cannam@58
|
180 // rms += m_beatframe[j] * m_beatframe[j];
|
cannam@54
|
181 }
|
cannam@58
|
182 // rms = sqrt(rms);
|
cannam@57
|
183 // std::cerr << "beat " << i << ": audio rms " << rms << std::endl;
|
cannam@54
|
184
|
cannam@54
|
185 for (size_t j = beatlen; j < m_beatframesize; ++j) {
|
cannam@54
|
186 m_beatframe[j] = 0.0;
|
cannam@54
|
187 }
|
cannam@54
|
188
|
cannam@54
|
189 // Now FFT beat frame
|
cannam@54
|
190
|
cannam@64
|
191 m_fft->process(false, m_beatframe, m_fftRealOut, m_fftImagOut);
|
cannam@54
|
192
|
cannam@54
|
193 // Calculate magnitudes
|
cannam@54
|
194
|
cannam@54
|
195 for (size_t j = 0; j < m_beatframesize/2; ++j) {
|
cannam@54
|
196 newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
|
cannam@54
|
197 m_fftImagOut[j] * m_fftImagOut[j]);
|
cannam@54
|
198 }
|
cannam@54
|
199
|
cannam@54
|
200 // Preserve peaks by applying adaptive threshold
|
cannam@54
|
201
|
cannam@54
|
202 MathUtilities::adaptiveThreshold(newspec);
|
cannam@54
|
203
|
cannam@54
|
204 // Calculate JS divergence between new and old spectral frames
|
cannam@54
|
205
|
cannam@56
|
206 if (i > 0) { // otherwise we have no previous frame
|
cannam@56
|
207 m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
|
cannam@57
|
208 // std::cerr << "specdiff: " << m_beatsd[m_beatsd.size()-1] << std::endl;
|
cannam@56
|
209 }
|
cannam@54
|
210
|
cannam@54
|
211 // Copy newspec across to old
|
cannam@54
|
212
|
cannam@54
|
213 for (size_t j = 0; j < m_beatframesize/2; ++j) {
|
cannam@54
|
214 oldspec[j] = newspec[j];
|
cannam@54
|
215 }
|
cannam@54
|
216 }
|
cannam@54
|
217
|
cannam@54
|
218 // We now have all spectral difference measures in specdiff
|
cannam@54
|
219
|
cannam@55
|
220 uint timesig = m_bpb;
|
cannam@55
|
221 if (timesig == 0) timesig = 4;
|
cannam@55
|
222
|
cannam@54
|
223 d_vec_t dbcand(timesig); // downbeat candidates
|
cannam@54
|
224
|
cannam@55
|
225 for (int beat = 0; beat < timesig; ++beat) {
|
cannam@55
|
226 dbcand[beat] = 0;
|
cannam@55
|
227 }
|
cannam@55
|
228
|
cannam@54
|
229 // look for beat transition which leads to greatest spectral change
|
cannam@54
|
230 for (int beat = 0; beat < timesig; ++beat) {
|
cannam@56
|
231 int count = 0;
|
cannam@56
|
232 for (int example = beat - 1; example < m_beatsd.size(); example += timesig) {
|
cannam@56
|
233 if (example < 0) continue;
|
cannam@56
|
234 dbcand[beat] += (m_beatsd[example]) / timesig;
|
cannam@56
|
235 ++count;
|
cannam@54
|
236 }
|
cannam@56
|
237 if (count > 0) m_beatsd[beat] /= count;
|
cannam@57
|
238 // std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl;
|
cannam@54
|
239 }
|
cannam@54
|
240
|
cannam@55
|
241
|
cannam@54
|
242 // first downbeat is beat at index of maximum value of dbcand
|
cannam@54
|
243 int dbind = MathUtilities::getMax(dbcand);
|
cannam@54
|
244
|
cannam@54
|
245 // remaining downbeats are at timesig intervals from the first
|
cannam@54
|
246 for (int i = dbind; i < beats.size(); i += timesig) {
|
cannam@54
|
247 downbeats.push_back(i);
|
cannam@54
|
248 }
|
cannam@54
|
249 }
|
cannam@54
|
250
|
cannam@54
|
251 double
|
cannam@54
|
252 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
|
cannam@54
|
253 {
|
cannam@54
|
254 // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
|
cannam@54
|
255
|
cannam@54
|
256 uint SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
|
cannam@54
|
257 if (SPECSIZE > oldspec.size()/4) {
|
cannam@54
|
258 SPECSIZE = oldspec.size()/4;
|
cannam@54
|
259 }
|
cannam@54
|
260 double SD = 0.;
|
cannam@54
|
261 double sd1 = 0.;
|
cannam@54
|
262
|
cannam@54
|
263 double sumnew = 0.;
|
cannam@54
|
264 double sumold = 0.;
|
cannam@54
|
265
|
cannam@54
|
266 for (uint i = 0;i < SPECSIZE;i++)
|
cannam@54
|
267 {
|
cannam@54
|
268 newspec[i] +=EPS;
|
cannam@54
|
269 oldspec[i] +=EPS;
|
cannam@54
|
270
|
cannam@54
|
271 sumnew+=newspec[i];
|
cannam@54
|
272 sumold+=oldspec[i];
|
cannam@54
|
273 }
|
cannam@54
|
274
|
cannam@54
|
275 for (uint i = 0;i < SPECSIZE;i++)
|
cannam@54
|
276 {
|
cannam@54
|
277 newspec[i] /= (sumnew);
|
cannam@54
|
278 oldspec[i] /= (sumold);
|
cannam@54
|
279
|
cannam@54
|
280 // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
|
cannam@54
|
281 if (newspec[i] == 0)
|
cannam@54
|
282 {
|
cannam@54
|
283 newspec[i] = 1.;
|
cannam@54
|
284 }
|
cannam@54
|
285
|
cannam@54
|
286 if (oldspec[i] == 0)
|
cannam@54
|
287 {
|
cannam@54
|
288 oldspec[i] = 1.;
|
cannam@54
|
289 }
|
cannam@54
|
290
|
cannam@54
|
291 // JENSEN-SHANNON CALCULATION
|
cannam@54
|
292 sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
|
cannam@54
|
293 SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i])));
|
cannam@54
|
294 }
|
cannam@54
|
295
|
cannam@54
|
296 return SD;
|
cannam@54
|
297 }
|
cannam@54
|
298
|
cannam@56
|
299 void
|
cannam@56
|
300 DownBeat::getBeatSD(vector<double> &beatsd) const
|
cannam@56
|
301 {
|
cannam@56
|
302 for (int i = 0; i < m_beatsd.size(); ++i) beatsd.push_back(m_beatsd[i]);
|
cannam@56
|
303 }
|
cannam@56
|
304
|