annotate dsp/tempotracking/DownBeat.cpp @ 57:d241e7701c0c

* remove some debug output
author cannam
date Fri, 27 Feb 2009 13:07:22 +0000
parents a0f987c06bec
children d72fcd34d9a7
rev   line source
cannam@54 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@54 2
cannam@54 3 /*
cannam@54 4 QM DSP Library
cannam@54 5
cannam@54 6 Centre for Digital Music, Queen Mary, University of London.
cannam@54 7 This file copyright 2008-2009 Matthew Davies and QMUL.
cannam@54 8 All rights reserved.
cannam@54 9 */
cannam@54 10
cannam@54 11 #include "DownBeat.h"
cannam@54 12
cannam@54 13 #include "maths/MathAliases.h"
cannam@54 14 #include "maths/MathUtilities.h"
cannam@55 15 #include "maths/KLDivergence.h"
cannam@54 16 #include "dsp/transforms/FFT.h"
cannam@54 17
cannam@54 18 #include <iostream>
cannam@54 19 #include <cstdlib>
cannam@54 20
cannam@54 21 DownBeat::DownBeat(float originalSampleRate,
cannam@54 22 size_t decimationFactor,
cannam@54 23 size_t dfIncrement) :
cannam@55 24 m_bpb(0),
cannam@54 25 m_rate(originalSampleRate),
cannam@54 26 m_factor(decimationFactor),
cannam@54 27 m_increment(dfIncrement),
cannam@54 28 m_decimator1(0),
cannam@54 29 m_decimator2(0),
cannam@54 30 m_buffer(0),
cannam@54 31 m_bufsiz(0),
cannam@54 32 m_buffill(0),
cannam@54 33 m_beatframesize(0),
cannam@54 34 m_beatframe(0)
cannam@54 35 {
cannam@54 36 // beat frame size is next power of two up from 1.3 seconds at the
cannam@54 37 // downsampled rate (happens to produce 4096 for 44100 or 48000 at
cannam@54 38 // 16x decimation, which is our expected normal situation)
cannam@55 39 m_beatframesize = MathUtilities::nextPowerOfTwo
cannam@55 40 (int((m_rate / decimationFactor) * 1.3));
cannam@57 41 // std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl;
cannam@54 42 m_beatframe = new double[m_beatframesize];
cannam@54 43 m_fftRealOut = new double[m_beatframesize];
cannam@54 44 m_fftImagOut = new double[m_beatframesize];
cannam@54 45 }
cannam@54 46
cannam@54 47 DownBeat::~DownBeat()
cannam@54 48 {
cannam@54 49 delete m_decimator1;
cannam@54 50 delete m_decimator2;
cannam@54 51 if (m_buffer) free(m_buffer);
cannam@54 52 delete[] m_decbuf;
cannam@54 53 delete[] m_beatframe;
cannam@54 54 delete[] m_fftRealOut;
cannam@54 55 delete[] m_fftImagOut;
cannam@54 56 }
cannam@54 57
cannam@54 58 void
cannam@55 59 DownBeat::setBeatsPerBar(int bpb)
cannam@55 60 {
cannam@55 61 m_bpb = bpb;
cannam@55 62 }
cannam@55 63
cannam@55 64 void
cannam@54 65 DownBeat::makeDecimators()
cannam@54 66 {
cannam@54 67 if (m_factor < 2) return;
cannam@54 68 int highest = Decimator::getHighestSupportedFactor();
cannam@54 69 if (m_factor <= highest) {
cannam@54 70 m_decimator1 = new Decimator(m_increment, m_factor);
cannam@57 71 // std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl;
cannam@54 72 return;
cannam@54 73 }
cannam@54 74 m_decimator1 = new Decimator(m_increment, highest);
cannam@57 75 // std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl;
cannam@54 76 m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
cannam@57 77 // std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl;
cannam@55 78 m_decbuf = new float[m_increment / highest];
cannam@54 79 }
cannam@54 80
cannam@54 81 void
cannam@55 82 DownBeat::pushAudioBlock(const float *audio)
cannam@54 83 {
cannam@54 84 if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
cannam@54 85 if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
cannam@54 86 else m_bufsiz = m_bufsiz * 2;
cannam@54 87 if (!m_buffer) {
cannam@55 88 m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
cannam@54 89 } else {
cannam@57 90 // std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl;
cannam@55 91 m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
cannam@54 92 }
cannam@54 93 }
cannam@54 94 if (!m_decimator1) makeDecimators();
cannam@55 95 float rmsin = 0, rmsout = 0;
cannam@55 96 for (int i = 0; i < m_increment; ++i) {
cannam@55 97 rmsin += audio[i] * audio[i];
cannam@55 98 }
cannam@54 99 if (m_decimator2) {
cannam@54 100 m_decimator1->process(audio, m_decbuf);
cannam@54 101 m_decimator2->process(m_decbuf, m_buffer + m_buffill);
cannam@54 102 } else {
cannam@54 103 m_decimator1->process(audio, m_buffer + m_buffill);
cannam@54 104 }
cannam@55 105 for (int i = 0; i < m_increment / m_factor; ++i) {
cannam@55 106 rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i];
cannam@55 107 }
cannam@57 108 // std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl;
cannam@54 109 m_buffill += m_increment / m_factor;
cannam@54 110 }
cannam@54 111
cannam@55 112 const float *
cannam@54 113 DownBeat::getBufferedAudio(size_t &length) const
cannam@54 114 {
cannam@54 115 length = m_buffill;
cannam@54 116 return m_buffer;
cannam@54 117 }
cannam@54 118
cannam@54 119 void
cannam@55 120 DownBeat::resetAudioBuffer()
cannam@55 121 {
cannam@55 122 if (m_buffer) free(m_buffer);
cannam@55 123 m_buffill = 0;
cannam@55 124 m_bufsiz = 0;
cannam@55 125 }
cannam@55 126
cannam@55 127 void
cannam@55 128 DownBeat::findDownBeats(const float *audio,
cannam@54 129 size_t audioLength,
cannam@54 130 const d_vec_t &beats,
cannam@54 131 i_vec_t &downbeats)
cannam@54 132 {
cannam@54 133 // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
cannam@54 134 // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
cannam@54 135 // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
cannam@54 136
cannam@54 137 // IMPLEMENTATION (MOSTLY) FOLLOWS:
cannam@54 138 // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
cannam@54 139 // EUSIPCO 2006, FLORENCE, ITALY
cannam@54 140
cannam@54 141 d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
cannam@54 142 d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
cannam@56 143
cannam@56 144 m_beatsd.clear();
cannam@54 145
cannam@54 146 if (audioLength == 0) return;
cannam@54 147
cannam@54 148 for (size_t i = 0; i + 1 < beats.size(); ++i) {
cannam@54 149
cannam@54 150 // Copy the extents of the current beat from downsampled array
cannam@54 151 // into beat frame buffer
cannam@54 152
cannam@54 153 size_t beatstart = (beats[i] * m_increment) / m_factor;
cannam@55 154 size_t beatend = (beats[i+1] * m_increment) / m_factor;
cannam@54 155 if (beatend >= audioLength) beatend = audioLength - 1;
cannam@54 156 if (beatend < beatstart) beatend = beatstart;
cannam@54 157 size_t beatlen = beatend - beatstart;
cannam@54 158
cannam@54 159 // Also apply a Hanning window to the beat frame buffer, sized
cannam@54 160 // to the beat extents rather than the frame size. (Because
cannam@54 161 // the size varies, it's easier to do this by hand than use
cannam@54 162 // our Window abstraction.)
cannam@54 163
cannam@55 164 float rms = 0;
cannam@54 165 for (size_t j = 0; j < beatlen; ++j) {
cannam@54 166 double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
cannam@54 167 m_beatframe[j] = audio[beatstart + j] * mul;
cannam@55 168 rms += m_beatframe[j] * m_beatframe[j];
cannam@54 169 }
cannam@55 170 rms = sqrt(rms);
cannam@57 171 // std::cerr << "beat " << i << ": audio rms " << rms << std::endl;
cannam@54 172
cannam@54 173 for (size_t j = beatlen; j < m_beatframesize; ++j) {
cannam@54 174 m_beatframe[j] = 0.0;
cannam@54 175 }
cannam@54 176
cannam@54 177 // Now FFT beat frame
cannam@54 178
cannam@54 179 FFT::process(m_beatframesize, false,
cannam@54 180 m_beatframe, 0, m_fftRealOut, m_fftImagOut);
cannam@54 181
cannam@54 182 // Calculate magnitudes
cannam@54 183
cannam@54 184 for (size_t j = 0; j < m_beatframesize/2; ++j) {
cannam@54 185 newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
cannam@54 186 m_fftImagOut[j] * m_fftImagOut[j]);
cannam@54 187 }
cannam@54 188
cannam@54 189 // Preserve peaks by applying adaptive threshold
cannam@54 190
cannam@54 191 MathUtilities::adaptiveThreshold(newspec);
cannam@54 192
cannam@54 193 // Calculate JS divergence between new and old spectral frames
cannam@54 194
cannam@56 195 if (i > 0) { // otherwise we have no previous frame
cannam@56 196 m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
cannam@57 197 // std::cerr << "specdiff: " << m_beatsd[m_beatsd.size()-1] << std::endl;
cannam@56 198 }
cannam@54 199
cannam@54 200 // Copy newspec across to old
cannam@54 201
cannam@54 202 for (size_t j = 0; j < m_beatframesize/2; ++j) {
cannam@54 203 oldspec[j] = newspec[j];
cannam@54 204 }
cannam@54 205 }
cannam@54 206
cannam@54 207 // We now have all spectral difference measures in specdiff
cannam@54 208
cannam@55 209 uint timesig = m_bpb;
cannam@55 210 if (timesig == 0) timesig = 4;
cannam@55 211
cannam@54 212 d_vec_t dbcand(timesig); // downbeat candidates
cannam@54 213
cannam@55 214 for (int beat = 0; beat < timesig; ++beat) {
cannam@55 215 dbcand[beat] = 0;
cannam@55 216 }
cannam@55 217
cannam@54 218 // look for beat transition which leads to greatest spectral change
cannam@54 219 for (int beat = 0; beat < timesig; ++beat) {
cannam@56 220 int count = 0;
cannam@56 221 for (int example = beat - 1; example < m_beatsd.size(); example += timesig) {
cannam@56 222 if (example < 0) continue;
cannam@56 223 dbcand[beat] += (m_beatsd[example]) / timesig;
cannam@56 224 ++count;
cannam@54 225 }
cannam@56 226 if (count > 0) m_beatsd[beat] /= count;
cannam@57 227 // std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl;
cannam@54 228 }
cannam@54 229
cannam@55 230
cannam@54 231 // first downbeat is beat at index of maximum value of dbcand
cannam@54 232 int dbind = MathUtilities::getMax(dbcand);
cannam@54 233
cannam@54 234 // remaining downbeats are at timesig intervals from the first
cannam@54 235 for (int i = dbind; i < beats.size(); i += timesig) {
cannam@54 236 downbeats.push_back(i);
cannam@54 237 }
cannam@54 238 }
cannam@54 239
cannam@54 240 double
cannam@54 241 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
cannam@54 242 {
cannam@54 243 // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
cannam@54 244
cannam@54 245 uint SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
cannam@54 246 if (SPECSIZE > oldspec.size()/4) {
cannam@54 247 SPECSIZE = oldspec.size()/4;
cannam@54 248 }
cannam@54 249 double SD = 0.;
cannam@54 250 double sd1 = 0.;
cannam@54 251
cannam@54 252 double sumnew = 0.;
cannam@54 253 double sumold = 0.;
cannam@54 254
cannam@54 255 for (uint i = 0;i < SPECSIZE;i++)
cannam@54 256 {
cannam@54 257 newspec[i] +=EPS;
cannam@54 258 oldspec[i] +=EPS;
cannam@54 259
cannam@54 260 sumnew+=newspec[i];
cannam@54 261 sumold+=oldspec[i];
cannam@54 262 }
cannam@54 263
cannam@54 264 for (uint i = 0;i < SPECSIZE;i++)
cannam@54 265 {
cannam@54 266 newspec[i] /= (sumnew);
cannam@54 267 oldspec[i] /= (sumold);
cannam@54 268
cannam@54 269 // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
cannam@54 270 if (newspec[i] == 0)
cannam@54 271 {
cannam@54 272 newspec[i] = 1.;
cannam@54 273 }
cannam@54 274
cannam@54 275 if (oldspec[i] == 0)
cannam@54 276 {
cannam@54 277 oldspec[i] = 1.;
cannam@54 278 }
cannam@54 279
cannam@54 280 // JENSEN-SHANNON CALCULATION
cannam@54 281 sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
cannam@54 282 SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i])));
cannam@54 283 }
cannam@54 284
cannam@54 285 return SD;
cannam@54 286 }
cannam@54 287
cannam@56 288 void
cannam@56 289 DownBeat::getBeatSD(vector<double> &beatsd) const
cannam@56 290 {
cannam@56 291 for (int i = 0; i < m_beatsd.size(); ++i) beatsd.push_back(m_beatsd[i]);
cannam@56 292 }
cannam@56 293