annotate dsp/mfcc/MFCC.cpp @ 64:6cb2b3cd5356

* Refactor FFT a little bit so as to separate construction and processing rather than have a single static method -- will make it easier to use a different implementation * pull in KissFFT implementation (not hooked up yet)
author cannam
date Wed, 13 May 2009 09:19:12 +0000
parents 38bf09927942
children e5907ae6de17
rev   line source
cannam@26 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@25 2
cannam@25 3 /*
cannam@26 4 QM DSP Library
cannam@25 5
cannam@26 6 Centre for Digital Music, Queen Mary, University of London.
cannam@26 7 This file copyright 2005 Nicolas Chetry, copyright 2008 QMUL.
cannam@26 8 All rights reserved.
cannam@26 9 */
cannam@25 10
cannam@26 11 #include <cmath>
cannam@26 12 #include <cstdlib>
cannam@47 13 #include <cstring>
cannam@26 14
cannam@26 15 #include "MFCC.h"
cannam@26 16 #include "dsp/transforms/FFT.h"
cannam@26 17 #include "base/Window.h"
cannam@26 18
cannam@26 19 MFCC::MFCC(MFCCConfig config)
cannam@26 20 {
cannam@26 21 int i,j;
cannam@26 22
cannam@26 23 /* Calculate at startup */
cannam@26 24 double *freqs, *lower, *center, *upper, *triangleHeight, *fftFreqs;
cannam@25 25
cannam@26 26 lowestFrequency = 66.6666666;
cannam@26 27 linearFilters = 13;
cannam@26 28 linearSpacing = 66.66666666;
cannam@26 29 logFilters = 27;
cannam@26 30 logSpacing = 1.0711703;
cannam@25 31
cannam@26 32 /* FFT and analysis window sizes */
cannam@26 33 fftSize = config.fftsize;
cannam@64 34 fft = new FFTReal(fftSize);
cannam@26 35
cannam@26 36 totalFilters = linearFilters + logFilters;
cannam@30 37 logPower = config.logpower;
cannam@25 38
cannam@26 39 samplingRate = config.FS;
cannam@26 40
cannam@26 41 /* The number of cepstral componenents */
cannam@26 42 nceps = config.nceps;
cannam@25 43
cannam@26 44 /* Set if user want C0 */
cannam@26 45 WANT_C0 = (config.want_c0 ? 1 : 0);
cannam@25 46
cannam@26 47 /* Allocate space for feature vector */
cannam@26 48 if (WANT_C0 == 1) {
cannam@26 49 ceps = (double*)calloc(nceps+1, sizeof(double));
cannam@26 50 } else {
cannam@26 51 ceps = (double*)calloc(nceps, sizeof(double));
cannam@26 52 }
cannam@26 53
cannam@26 54 /* Allocate space for local vectors */
cannam@26 55 mfccDCTMatrix = (double**)calloc(nceps+1, sizeof(double*));
cannam@30 56 for (i = 0; i < nceps+1; i++) {
cannam@26 57 mfccDCTMatrix[i]= (double*)calloc(totalFilters, sizeof(double));
cannam@26 58 }
cannam@26 59
cannam@26 60 mfccFilterWeights = (double**)calloc(totalFilters, sizeof(double*));
cannam@30 61 for (i = 0; i < totalFilters; i++) {
cannam@26 62 mfccFilterWeights[i] = (double*)calloc(fftSize, sizeof(double));
cannam@26 63 }
cannam@26 64
cannam@26 65 freqs = (double*)calloc(totalFilters+2,sizeof(double));
cannam@26 66
cannam@26 67 lower = (double*)calloc(totalFilters,sizeof(double));
cannam@26 68 center = (double*)calloc(totalFilters,sizeof(double));
cannam@26 69 upper = (double*)calloc(totalFilters,sizeof(double));
cannam@26 70
cannam@26 71 triangleHeight = (double*)calloc(totalFilters,sizeof(double));
cannam@26 72 fftFreqs = (double*)calloc(fftSize,sizeof(double));
cannam@25 73
cannam@30 74 for (i = 0; i < linearFilters; i++) {
cannam@26 75 freqs[i] = lowestFrequency + ((double)i) * linearSpacing;
cannam@26 76 }
cannam@26 77
cannam@30 78 for (i = linearFilters; i < totalFilters+2; i++) {
cannam@26 79 freqs[i] = freqs[linearFilters-1] *
cannam@26 80 pow(logSpacing, (double)(i-linearFilters+1));
cannam@26 81 }
cannam@26 82
cannam@26 83 /* Define lower, center and upper */
cannam@26 84 memcpy(lower, freqs,totalFilters*sizeof(double));
cannam@26 85 memcpy(center, &freqs[1],totalFilters*sizeof(double));
cannam@26 86 memcpy(upper, &freqs[2],totalFilters*sizeof(double));
cannam@26 87
cannam@26 88 for (i=0;i<totalFilters;i++){
cannam@26 89 triangleHeight[i] = 2./(upper[i]-lower[i]);
cannam@26 90 }
cannam@26 91
cannam@26 92 for (i=0;i<fftSize;i++){
cannam@26 93 fftFreqs[i] = ((double) i / ((double) fftSize ) *
cannam@26 94 (double) samplingRate);
cannam@26 95 }
cannam@25 96
cannam@26 97 /* Build now the mccFilterWeight matrix */
cannam@26 98 for (i=0;i<totalFilters;i++){
cannam@25 99
cannam@26 100 for (j=0;j<fftSize;j++) {
cannam@26 101
cannam@26 102 if ((fftFreqs[j] > lower[i]) && (fftFreqs[j] <= center[i])) {
cannam@26 103
cannam@26 104 mfccFilterWeights[i][j] = triangleHeight[i] *
cannam@26 105 (fftFreqs[j]-lower[i]) / (center[i]-lower[i]);
cannam@26 106
cannam@26 107 }
cannam@26 108 else
cannam@26 109 {
cannam@26 110 mfccFilterWeights[i][j] = 0.0;
cannam@26 111 }
cannam@25 112
cannam@26 113 if ((fftFreqs[j]>center[i]) && (fftFreqs[j]<upper[i])) {
cannam@25 114
cannam@30 115 mfccFilterWeights[i][j] = mfccFilterWeights[i][j]
cannam@30 116 + triangleHeight[i] * (upper[i]-fftFreqs[j])
cannam@26 117 / (upper[i]-center[i]);
cannam@26 118 }
cannam@26 119 else
cannam@26 120 {
cannam@26 121 mfccFilterWeights[i][j] = mfccFilterWeights[i][j] + 0.0;
cannam@26 122 }
cannam@25 123 }
cannam@25 124
cannam@26 125 }
cannam@25 126
cannam@26 127 /*
cannam@26 128 * We calculate now mfccDCT matrix
cannam@26 129 * NB: +1 because of the DC component
cannam@26 130 */
cannam@29 131
cannam@29 132 const double pi = 3.14159265358979323846264338327950288;
cannam@26 133
cannam@30 134 for (i = 0; i < nceps+1; i++) {
cannam@30 135 for (j = 0; j < totalFilters; j++) {
cannam@26 136 mfccDCTMatrix[i][j] = (1./sqrt((double) totalFilters / 2.))
cannam@29 137 * cos((double) i * ((double) j + 0.5) / (double) totalFilters * pi);
cannam@25 138 }
cannam@25 139 }
cannam@25 140
cannam@30 141 for (j = 0; j < totalFilters; j++){
cannam@30 142 mfccDCTMatrix[0][j] = (sqrt(2.)/2.) * mfccDCTMatrix[0][j];
cannam@26 143 }
cannam@26 144
cannam@26 145 /* The analysis window */
cannam@32 146 window = new Window<double>(config.window, fftSize);
cannam@25 147
cannam@26 148 /* Allocate memory for the FFT */
cannam@30 149 realOut = (double*)calloc(fftSize, sizeof(double));
cannam@30 150 imagOut = (double*)calloc(fftSize, sizeof(double));
cannam@30 151
cannam@30 152 earMag = (double*)calloc(totalFilters, sizeof(double));
cannam@30 153 fftMag = (double*)calloc(fftSize/2, sizeof(double));
cannam@25 154
cannam@26 155 free(freqs);
cannam@26 156 free(lower);
cannam@26 157 free(center);
cannam@26 158 free(upper);
cannam@26 159 free(triangleHeight);
cannam@26 160 free(fftFreqs);
cannam@25 161 }
cannam@25 162
cannam@26 163 MFCC::~MFCC()
cannam@26 164 {
cannam@26 165 int i;
cannam@26 166
cannam@26 167 /* Free the structure */
cannam@30 168 for (i = 0; i < nceps+1; i++) {
cannam@26 169 free(mfccDCTMatrix[i]);
cannam@26 170 }
cannam@26 171 free(mfccDCTMatrix);
cannam@26 172
cannam@30 173 for (i = 0; i < totalFilters; i++) {
cannam@26 174 free(mfccFilterWeights[i]);
cannam@26 175 }
cannam@26 176 free(mfccFilterWeights);
cannam@26 177
cannam@26 178 /* Free the feature vector */
cannam@26 179 free(ceps);
cannam@26 180
cannam@26 181 /* The analysis window */
cannam@26 182 delete window;
cannam@30 183
cannam@30 184 free(earMag);
cannam@30 185 free(fftMag);
cannam@26 186
cannam@26 187 /* Free the FFT */
cannam@26 188 free(realOut);
cannam@26 189 free(imagOut);
cannam@64 190
cannam@64 191 delete fft;
cannam@26 192 }
cannam@25 193
cannam@25 194
cannam@25 195 /*
cannam@25 196 *
cannam@25 197 * Extract the MFCC on the input frame
cannam@25 198 *
cannam@25 199 */
cannam@30 200 int MFCC::process(const double *inframe, double *outceps)
cannam@26 201 {
cannam@30 202 double *inputData = (double *)malloc(fftSize * sizeof(double));
cannam@30 203 for (int i = 0; i < fftSize; ++i) inputData[i] = inframe[i];
cannam@25 204
cannam@30 205 window->cut(inputData);
cannam@26 206
cannam@26 207 /* Calculate the fft on the input frame */
cannam@64 208 fft->process(0, inputData, realOut, imagOut);
cannam@25 209
cannam@30 210 free(inputData);
cannam@30 211
cannam@30 212 return process(realOut, imagOut, outceps);
cannam@30 213 }
cannam@30 214
cannam@30 215 int MFCC::process(const double *real, const double *imag, double *outceps)
cannam@30 216 {
cannam@30 217 int i, j;
cannam@30 218
cannam@30 219 for (i = 0; i < fftSize/2; ++i) {
cannam@30 220 fftMag[i] = sqrt(real[i] * real[i] + imag[i] * imag[i]);
cannam@30 221 }
cannam@30 222
cannam@30 223 for (i = 0; i < totalFilters; ++i) {
cannam@30 224 earMag[i] = 0.0;
cannam@25 225 }
cannam@25 226
cannam@26 227 /* Multiply by mfccFilterWeights */
cannam@30 228 for (i = 0; i < totalFilters; i++) {
cannam@30 229 double tmp = 0.0;
cannam@30 230 for (j = 0; j < fftSize/2; j++) {
cannam@30 231 tmp = tmp + (mfccFilterWeights[i][j] * fftMag[j]);
cannam@26 232 }
cannam@30 233 if (tmp > 0) earMag[i] = log10(tmp);
cannam@30 234 else earMag[i] = 0.0;
cannam@30 235
cannam@30 236 if (logPower != 1.0) {
cannam@30 237 earMag[i] = pow(earMag[i], logPower);
cannam@30 238 }
cannam@26 239 }
cannam@26 240
cannam@26 241 /*
cannam@26 242 *
cannam@26 243 * Calculate now the cepstral coefficients
cannam@26 244 * with or without the DC component
cannam@26 245 *
cannam@26 246 */
cannam@26 247
cannam@30 248 if (WANT_C0 == 1) {
cannam@26 249
cannam@30 250 for (i = 0; i < nceps+1; i++) {
cannam@30 251 double tmp = 0.;
cannam@30 252 for (j = 0; j < totalFilters; j++){
cannam@30 253 tmp = tmp + mfccDCTMatrix[i][j] * earMag[j];
cannam@26 254 }
cannam@26 255 outceps[i] = tmp;
cannam@26 256 }
cannam@26 257 }
cannam@25 258 else
cannam@26 259 {
cannam@30 260 for (i = 1; i < nceps+1; i++) {
cannam@30 261 double tmp = 0.;
cannam@30 262 for (j = 0; j < totalFilters; j++){
cannam@30 263 tmp = tmp + mfccDCTMatrix[i][j] * earMag[j];
cannam@26 264 }
cannam@26 265 outceps[i-1] = tmp;
cannam@25 266 }
cannam@26 267 }
cannam@25 268
cannam@26 269 return nceps;
cannam@25 270 }
cannam@25 271