annotate dsp/mfcc/MFCC.cpp @ 47:38bf09927942

* Build fixes for gcc 4.3.2 * _Maybe_, but probably not, fix crash in tempo tracker... let's see how we get on
author cannam
date Mon, 10 Nov 2008 14:01:55 +0000
parents 8bb764969d50
children 6cb2b3cd5356
rev   line source
cannam@26 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@25 2
cannam@25 3 /*
cannam@26 4 QM DSP Library
cannam@25 5
cannam@26 6 Centre for Digital Music, Queen Mary, University of London.
cannam@26 7 This file copyright 2005 Nicolas Chetry, copyright 2008 QMUL.
cannam@26 8 All rights reserved.
cannam@26 9 */
cannam@25 10
cannam@26 11 #include <cmath>
cannam@26 12 #include <cstdlib>
cannam@47 13 #include <cstring>
cannam@26 14
cannam@26 15 #include "MFCC.h"
cannam@26 16 #include "dsp/transforms/FFT.h"
cannam@26 17 #include "base/Window.h"
cannam@26 18
cannam@26 19 MFCC::MFCC(MFCCConfig config)
cannam@26 20 {
cannam@26 21 int i,j;
cannam@26 22
cannam@26 23 /* Calculate at startup */
cannam@26 24 double *freqs, *lower, *center, *upper, *triangleHeight, *fftFreqs;
cannam@25 25
cannam@26 26 lowestFrequency = 66.6666666;
cannam@26 27 linearFilters = 13;
cannam@26 28 linearSpacing = 66.66666666;
cannam@26 29 logFilters = 27;
cannam@26 30 logSpacing = 1.0711703;
cannam@25 31
cannam@26 32 /* FFT and analysis window sizes */
cannam@26 33 fftSize = config.fftsize;
cannam@26 34
cannam@26 35 totalFilters = linearFilters + logFilters;
cannam@30 36 logPower = config.logpower;
cannam@25 37
cannam@26 38 samplingRate = config.FS;
cannam@26 39
cannam@26 40 /* The number of cepstral componenents */
cannam@26 41 nceps = config.nceps;
cannam@25 42
cannam@26 43 /* Set if user want C0 */
cannam@26 44 WANT_C0 = (config.want_c0 ? 1 : 0);
cannam@25 45
cannam@26 46 /* Allocate space for feature vector */
cannam@26 47 if (WANT_C0 == 1) {
cannam@26 48 ceps = (double*)calloc(nceps+1, sizeof(double));
cannam@26 49 } else {
cannam@26 50 ceps = (double*)calloc(nceps, sizeof(double));
cannam@26 51 }
cannam@26 52
cannam@26 53 /* Allocate space for local vectors */
cannam@26 54 mfccDCTMatrix = (double**)calloc(nceps+1, sizeof(double*));
cannam@30 55 for (i = 0; i < nceps+1; i++) {
cannam@26 56 mfccDCTMatrix[i]= (double*)calloc(totalFilters, sizeof(double));
cannam@26 57 }
cannam@26 58
cannam@26 59 mfccFilterWeights = (double**)calloc(totalFilters, sizeof(double*));
cannam@30 60 for (i = 0; i < totalFilters; i++) {
cannam@26 61 mfccFilterWeights[i] = (double*)calloc(fftSize, sizeof(double));
cannam@26 62 }
cannam@26 63
cannam@26 64 freqs = (double*)calloc(totalFilters+2,sizeof(double));
cannam@26 65
cannam@26 66 lower = (double*)calloc(totalFilters,sizeof(double));
cannam@26 67 center = (double*)calloc(totalFilters,sizeof(double));
cannam@26 68 upper = (double*)calloc(totalFilters,sizeof(double));
cannam@26 69
cannam@26 70 triangleHeight = (double*)calloc(totalFilters,sizeof(double));
cannam@26 71 fftFreqs = (double*)calloc(fftSize,sizeof(double));
cannam@25 72
cannam@30 73 for (i = 0; i < linearFilters; i++) {
cannam@26 74 freqs[i] = lowestFrequency + ((double)i) * linearSpacing;
cannam@26 75 }
cannam@26 76
cannam@30 77 for (i = linearFilters; i < totalFilters+2; i++) {
cannam@26 78 freqs[i] = freqs[linearFilters-1] *
cannam@26 79 pow(logSpacing, (double)(i-linearFilters+1));
cannam@26 80 }
cannam@26 81
cannam@26 82 /* Define lower, center and upper */
cannam@26 83 memcpy(lower, freqs,totalFilters*sizeof(double));
cannam@26 84 memcpy(center, &freqs[1],totalFilters*sizeof(double));
cannam@26 85 memcpy(upper, &freqs[2],totalFilters*sizeof(double));
cannam@26 86
cannam@26 87 for (i=0;i<totalFilters;i++){
cannam@26 88 triangleHeight[i] = 2./(upper[i]-lower[i]);
cannam@26 89 }
cannam@26 90
cannam@26 91 for (i=0;i<fftSize;i++){
cannam@26 92 fftFreqs[i] = ((double) i / ((double) fftSize ) *
cannam@26 93 (double) samplingRate);
cannam@26 94 }
cannam@25 95
cannam@26 96 /* Build now the mccFilterWeight matrix */
cannam@26 97 for (i=0;i<totalFilters;i++){
cannam@25 98
cannam@26 99 for (j=0;j<fftSize;j++) {
cannam@26 100
cannam@26 101 if ((fftFreqs[j] > lower[i]) && (fftFreqs[j] <= center[i])) {
cannam@26 102
cannam@26 103 mfccFilterWeights[i][j] = triangleHeight[i] *
cannam@26 104 (fftFreqs[j]-lower[i]) / (center[i]-lower[i]);
cannam@26 105
cannam@26 106 }
cannam@26 107 else
cannam@26 108 {
cannam@26 109 mfccFilterWeights[i][j] = 0.0;
cannam@26 110 }
cannam@25 111
cannam@26 112 if ((fftFreqs[j]>center[i]) && (fftFreqs[j]<upper[i])) {
cannam@25 113
cannam@30 114 mfccFilterWeights[i][j] = mfccFilterWeights[i][j]
cannam@30 115 + triangleHeight[i] * (upper[i]-fftFreqs[j])
cannam@26 116 / (upper[i]-center[i]);
cannam@26 117 }
cannam@26 118 else
cannam@26 119 {
cannam@26 120 mfccFilterWeights[i][j] = mfccFilterWeights[i][j] + 0.0;
cannam@26 121 }
cannam@25 122 }
cannam@25 123
cannam@26 124 }
cannam@25 125
cannam@26 126 /*
cannam@26 127 * We calculate now mfccDCT matrix
cannam@26 128 * NB: +1 because of the DC component
cannam@26 129 */
cannam@29 130
cannam@29 131 const double pi = 3.14159265358979323846264338327950288;
cannam@26 132
cannam@30 133 for (i = 0; i < nceps+1; i++) {
cannam@30 134 for (j = 0; j < totalFilters; j++) {
cannam@26 135 mfccDCTMatrix[i][j] = (1./sqrt((double) totalFilters / 2.))
cannam@29 136 * cos((double) i * ((double) j + 0.5) / (double) totalFilters * pi);
cannam@25 137 }
cannam@25 138 }
cannam@25 139
cannam@30 140 for (j = 0; j < totalFilters; j++){
cannam@30 141 mfccDCTMatrix[0][j] = (sqrt(2.)/2.) * mfccDCTMatrix[0][j];
cannam@26 142 }
cannam@26 143
cannam@26 144 /* The analysis window */
cannam@32 145 window = new Window<double>(config.window, fftSize);
cannam@25 146
cannam@26 147 /* Allocate memory for the FFT */
cannam@30 148 imagIn = (double*)calloc(fftSize, sizeof(double));
cannam@30 149 realOut = (double*)calloc(fftSize, sizeof(double));
cannam@30 150 imagOut = (double*)calloc(fftSize, sizeof(double));
cannam@30 151
cannam@30 152 earMag = (double*)calloc(totalFilters, sizeof(double));
cannam@30 153 fftMag = (double*)calloc(fftSize/2, sizeof(double));
cannam@25 154
cannam@26 155 free(freqs);
cannam@26 156 free(lower);
cannam@26 157 free(center);
cannam@26 158 free(upper);
cannam@26 159 free(triangleHeight);
cannam@26 160 free(fftFreqs);
cannam@25 161 }
cannam@25 162
cannam@26 163 MFCC::~MFCC()
cannam@26 164 {
cannam@26 165 int i;
cannam@26 166
cannam@26 167 /* Free the structure */
cannam@30 168 for (i = 0; i < nceps+1; i++) {
cannam@26 169 free(mfccDCTMatrix[i]);
cannam@26 170 }
cannam@26 171 free(mfccDCTMatrix);
cannam@26 172
cannam@30 173 for (i = 0; i < totalFilters; i++) {
cannam@26 174 free(mfccFilterWeights[i]);
cannam@26 175 }
cannam@26 176 free(mfccFilterWeights);
cannam@26 177
cannam@26 178 /* Free the feature vector */
cannam@26 179 free(ceps);
cannam@26 180
cannam@26 181 /* The analysis window */
cannam@26 182 delete window;
cannam@30 183
cannam@30 184 free(earMag);
cannam@30 185 free(fftMag);
cannam@26 186
cannam@26 187 /* Free the FFT */
cannam@26 188 free(imagIn);
cannam@26 189 free(realOut);
cannam@26 190 free(imagOut);
cannam@26 191 }
cannam@25 192
cannam@25 193
cannam@25 194 /*
cannam@25 195 *
cannam@25 196 * Extract the MFCC on the input frame
cannam@25 197 *
cannam@25 198 */
cannam@30 199 int MFCC::process(const double *inframe, double *outceps)
cannam@26 200 {
cannam@30 201 double *inputData = (double *)malloc(fftSize * sizeof(double));
cannam@30 202 for (int i = 0; i < fftSize; ++i) inputData[i] = inframe[i];
cannam@25 203
cannam@30 204 window->cut(inputData);
cannam@26 205
cannam@26 206 /* Calculate the fft on the input frame */
cannam@26 207 FFT::process(fftSize, 0, inputData, imagIn, realOut, imagOut);
cannam@25 208
cannam@30 209 free(inputData);
cannam@30 210
cannam@30 211 return process(realOut, imagOut, outceps);
cannam@30 212 }
cannam@30 213
cannam@30 214 int MFCC::process(const double *real, const double *imag, double *outceps)
cannam@30 215 {
cannam@30 216 int i, j;
cannam@30 217
cannam@30 218 for (i = 0; i < fftSize/2; ++i) {
cannam@30 219 fftMag[i] = sqrt(real[i] * real[i] + imag[i] * imag[i]);
cannam@30 220 }
cannam@30 221
cannam@30 222 for (i = 0; i < totalFilters; ++i) {
cannam@30 223 earMag[i] = 0.0;
cannam@25 224 }
cannam@25 225
cannam@26 226 /* Multiply by mfccFilterWeights */
cannam@30 227 for (i = 0; i < totalFilters; i++) {
cannam@30 228 double tmp = 0.0;
cannam@30 229 for (j = 0; j < fftSize/2; j++) {
cannam@30 230 tmp = tmp + (mfccFilterWeights[i][j] * fftMag[j]);
cannam@26 231 }
cannam@30 232 if (tmp > 0) earMag[i] = log10(tmp);
cannam@30 233 else earMag[i] = 0.0;
cannam@30 234
cannam@30 235 if (logPower != 1.0) {
cannam@30 236 earMag[i] = pow(earMag[i], logPower);
cannam@30 237 }
cannam@26 238 }
cannam@26 239
cannam@26 240 /*
cannam@26 241 *
cannam@26 242 * Calculate now the cepstral coefficients
cannam@26 243 * with or without the DC component
cannam@26 244 *
cannam@26 245 */
cannam@26 246
cannam@30 247 if (WANT_C0 == 1) {
cannam@26 248
cannam@30 249 for (i = 0; i < nceps+1; i++) {
cannam@30 250 double tmp = 0.;
cannam@30 251 for (j = 0; j < totalFilters; j++){
cannam@30 252 tmp = tmp + mfccDCTMatrix[i][j] * earMag[j];
cannam@26 253 }
cannam@26 254 outceps[i] = tmp;
cannam@26 255 }
cannam@26 256 }
cannam@25 257 else
cannam@26 258 {
cannam@30 259 for (i = 1; i < nceps+1; i++) {
cannam@30 260 double tmp = 0.;
cannam@30 261 for (j = 0; j < totalFilters; j++){
cannam@30 262 tmp = tmp + mfccDCTMatrix[i][j] * earMag[j];
cannam@26 263 }
cannam@26 264 outceps[i-1] = tmp;
cannam@25 265 }
cannam@26 266 }
cannam@25 267
cannam@26 268 return nceps;
cannam@25 269 }
cannam@25 270