annotate hmm/hmm.c @ 83:67899fda84f5

* Remove some unused code; minor tidy
author cannam
date Wed, 01 Dec 2010 14:05:25 +0000
parents 054c384d860d
children e5907ae6de17
rev   line source
cannam@19 1 /*
cannam@19 2 * hmm.c
cannam@19 3 *
cannam@19 4 * Created by Mark Levy on 12/02/2006.
cannam@19 5 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved.
cannam@19 6 *
cannam@19 7 */
cannam@19 8
cannam@19 9 #include <stdio.h>
cannam@19 10 #include <math.h>
cannam@19 11 #include <stdlib.h>
cannam@19 12 #include <float.h>
cannam@19 13 #include <time.h> /* to seed random number generator */
cannam@44 14
cannam@19 15 #include <clapack.h> /* LAPACK for matrix inversion */
cannam@44 16
cannam@79 17 #include "maths/nan-inf.h"
cannam@79 18
cannam@44 19 #ifdef ATLAS_ORDER
cannam@44 20 #define HAVE_ATLAS 1
cannam@44 21 #endif
cannam@44 22
cannam@44 23 #ifdef HAVE_ATLAS
cannam@44 24 // Using ATLAS C interface to LAPACK
cannam@44 25 #define dgetrf_(m, n, a, lda, ipiv, info) \
cannam@44 26 clapack_dgetrf(CblasColMajor, *m, *n, a, *lda, ipiv)
cannam@44 27 #define dgetri_(n, a, lda, ipiv, work, lwork, info) \
cannam@44 28 clapack_dgetri(CblasColMajor, *n, a, *lda, ipiv)
cannam@44 29 #endif
cannam@44 30
cannam@19 31 #ifdef _MAC_OS_X
cannam@19 32 #include <vecLib/cblas.h>
cannam@19 33 #else
cannam@19 34 #include <cblas.h> /* BLAS for matrix multiplication */
cannam@19 35 #endif
cannam@19 36
cannam@19 37 #include "hmm.h"
cannam@19 38
cannam@19 39 model_t* hmm_init(double** x, int T, int L, int N)
cannam@19 40 {
cannam@19 41 int i, j, d, e, t;
cannam@19 42 double s, ss;
cannam@19 43
cannam@19 44 model_t* model;
cannam@19 45 model = (model_t*) malloc(sizeof(model_t));
cannam@19 46 model->N = N;
cannam@19 47 model->L = L;
cannam@19 48 model->p0 = (double*) malloc(N*sizeof(double));
cannam@19 49 model->a = (double**) malloc(N*sizeof(double*));
cannam@19 50 model->mu = (double**) malloc(N*sizeof(double*));
cannam@19 51 for (i = 0; i < N; i++)
cannam@19 52 {
cannam@19 53 model->a[i] = (double*) malloc(N*sizeof(double));
cannam@19 54 model->mu[i] = (double*) malloc(L*sizeof(double));
cannam@19 55 }
cannam@19 56 model->cov = (double**) malloc(L*sizeof(double*));
cannam@19 57 for (i = 0; i < L; i++)
cannam@19 58 model->cov[i] = (double*) malloc(L*sizeof(double));
cannam@19 59
cannam@19 60 srand(time(0));
cannam@19 61 double* global_mean = (double*) malloc(L*sizeof(double));
cannam@19 62
cannam@19 63 /* find global mean */
cannam@19 64 for (d = 0; d < L; d++)
cannam@19 65 {
cannam@19 66 global_mean[d] = 0;
cannam@19 67 for (t = 0; t < T; t++)
cannam@19 68 global_mean[d] += x[t][d];
cannam@19 69 global_mean[d] /= T;
cannam@19 70 }
cannam@19 71
cannam@19 72 /* calculate global diagonal covariance */
cannam@19 73 for (d = 0; d < L; d++)
cannam@19 74 {
cannam@19 75 for (e = 0; e < L; e++)
cannam@19 76 model->cov[d][e] = 0;
cannam@19 77 for (t = 0; t < T; t++)
cannam@19 78 model->cov[d][d] += (x[t][d] - global_mean[d]) * (x[t][d] - global_mean[d]);
cannam@19 79 model->cov[d][d] /= T-1;
cannam@19 80 }
cannam@19 81
cannam@19 82 /* set all means close to global mean */
cannam@19 83 for (i = 0; i < N; i++)
cannam@19 84 {
cannam@19 85 for (d = 0; d < L; d++)
cannam@19 86 {
cannam@19 87 /* add some random noise related to covariance */
cannam@19 88 /* ideally the random number would be Gaussian(0,1), as a hack we make it uniform on [-0.25,0.25] */
cannam@19 89 model->mu[i][d] = global_mean[d] + (0.5 * rand() / (double) RAND_MAX - 0.25) * sqrt(model->cov[d][d]);
cannam@19 90 }
cannam@19 91 }
cannam@19 92
cannam@19 93 /* random intial and transition probs */
cannam@19 94 s = 0;
cannam@19 95 for (i = 0; i < N; i++)
cannam@19 96 {
cannam@19 97 model->p0[i] = 1 + rand() / (double) RAND_MAX;
cannam@19 98 s += model->p0[i];
cannam@19 99 ss = 0;
cannam@19 100 for (j = 0; j < N; j++)
cannam@19 101 {
cannam@19 102 model->a[i][j] = 1 + rand() / (double) RAND_MAX;
cannam@19 103 ss += model->a[i][j];
cannam@19 104 }
cannam@19 105 for (j = 0; j < N; j++)
cannam@19 106 {
cannam@19 107 model->a[i][j] /= ss;
cannam@19 108 }
cannam@19 109 }
cannam@19 110 for (i = 0; i < N; i++)
cannam@19 111 model->p0[i] /= s;
cannam@19 112
cannam@19 113 free(global_mean);
cannam@19 114
cannam@19 115 return model;
cannam@19 116 }
cannam@19 117
cannam@19 118 void hmm_close(model_t* model)
cannam@19 119 {
cannam@19 120 int i;
cannam@19 121
cannam@19 122 for (i = 0; i < model->N; i++)
cannam@19 123 {
cannam@19 124 free(model->a[i]);
cannam@19 125 free(model->mu[i]);
cannam@19 126 }
cannam@19 127 free(model->a);
cannam@19 128 free(model->mu);
cannam@19 129 for (i = 0; i < model->L; i++)
cannam@19 130 free(model->cov[i]);
cannam@19 131 free(model->cov);
cannam@19 132 free(model);
cannam@19 133 }
cannam@19 134
cannam@19 135 void hmm_train(double** x, int T, model_t* model)
cannam@19 136 {
cannam@19 137 int i, t;
cannam@19 138 double loglik; /* overall log-likelihood at each iteration */
cannam@19 139
cannam@19 140 int N = model->N;
cannam@19 141 int L = model->L;
cannam@19 142 double* p0 = model->p0;
cannam@19 143 double** a = model->a;
cannam@19 144 double** mu = model->mu;
cannam@19 145 double** cov = model->cov;
cannam@19 146
cannam@19 147 /* allocate memory */
cannam@19 148 double** gamma = (double**) malloc(T*sizeof(double*));
cannam@19 149 double*** xi = (double***) malloc(T*sizeof(double**));
cannam@19 150 for (t = 0; t < T; t++)
cannam@19 151 {
cannam@19 152 gamma[t] = (double*) malloc(N*sizeof(double));
cannam@19 153 xi[t] = (double**) malloc(N*sizeof(double*));
cannam@19 154 for (i = 0; i < N; i++)
cannam@19 155 xi[t][i] = (double*) malloc(N*sizeof(double));
cannam@19 156 }
cannam@19 157
cannam@19 158 /* temporary memory */
cannam@19 159 double* gauss_y = (double*) malloc(L*sizeof(double));
cannam@19 160 double* gauss_z = (double*) malloc(L*sizeof(double));
cannam@19 161
cannam@19 162 /* obs probs P(j|{x}) */
cannam@19 163 double** b = (double**) malloc(T*sizeof(double*));
cannam@19 164 for (t = 0; t < T; t++)
cannam@19 165 b[t] = (double*) malloc(N*sizeof(double));
cannam@19 166
cannam@19 167 /* inverse covariance and its determinant */
cannam@19 168 double** icov = (double**) malloc(L*sizeof(double*));
cannam@19 169 for (i = 0; i < L; i++)
cannam@19 170 icov[i] = (double*) malloc(L*sizeof(double));
cannam@19 171 double detcov;
cannam@19 172
cannam@19 173 double thresh = 0.0001;
cannam@19 174 int niter = 50;
cannam@19 175 int iter = 0;
cannam@19 176 double loglik1, loglik2;
cannam@30 177 int foundnan = 0;
cannam@30 178
cannam@30 179 while (iter < niter && !foundnan && !(iter > 1 && (loglik - loglik1) < thresh * (loglik1 - loglik2)))
cannam@19 180 {
cannam@19 181 ++iter;
cannam@58 182 /*
cannam@19 183 fprintf(stderr, "calculating obsprobs...\n");
cannam@19 184 fflush(stderr);
cannam@58 185 */
cannam@19 186 /* precalculate obs probs */
cannam@19 187 invert(cov, L, icov, &detcov);
cannam@19 188
cannam@19 189 for (t = 0; t < T; t++)
cannam@19 190 {
cannam@19 191 //int allzero = 1;
cannam@19 192 for (i = 0; i < N; i++)
cannam@19 193 {
cannam@19 194 b[t][i] = exp(loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z));
cannam@19 195
cannam@19 196 //if (b[t][i] != 0)
cannam@19 197 // allzero = 0;
cannam@19 198 }
cannam@19 199 /*
cannam@19 200 if (allzero)
cannam@19 201 {
cannam@19 202 printf("all the b[t][i] were zero for t = %d, correcting...\n", t);
cannam@19 203 for (i = 0; i < N; i++)
cannam@19 204 {
cannam@19 205 b[t][i] = 0.00001;
cannam@19 206 }
cannam@19 207 }
cannam@19 208 */
cannam@19 209 }
cannam@58 210 /*
cannam@19 211 fprintf(stderr, "forwards-backwards...\n");
cannam@19 212 fflush(stderr);
cannam@58 213 */
cannam@19 214 forward_backwards(xi, gamma, &loglik, &loglik1, &loglik2, iter, N, T, p0, a, b);
cannam@58 215 /*
cannam@19 216 fprintf(stderr, "iteration %d: loglik = %f\n", iter, loglik);
cannam@19 217 fprintf(stderr, "re-estimation...\n");
cannam@19 218 fflush(stderr);
cannam@58 219 */
cannam@79 220 if (ISNAN(loglik)) {
cannam@30 221 foundnan = 1;
cannam@30 222 continue;
cannam@30 223 }
cannam@19 224
cannam@19 225 baum_welch(p0, a, mu, cov, N, T, L, x, xi, gamma);
cannam@19 226
cannam@19 227 /*
cannam@19 228 printf("a:\n");
cannam@19 229 for (i = 0; i < model->N; i++)
cannam@19 230 {
cannam@19 231 for (j = 0; j < model->N; j++)
cannam@19 232 printf("%f ", model->a[i][j]);
cannam@19 233 printf("\n");
cannam@19 234 }
cannam@19 235 printf("\n\n");
cannam@19 236 */
cannam@19 237 //hmm_print(model);
cannam@19 238 }
cannam@19 239
cannam@19 240 /* deallocate memory */
cannam@19 241 for (t = 0; t < T; t++)
cannam@19 242 {
cannam@19 243 free(gamma[t]);
cannam@19 244 free(b[t]);
cannam@19 245 for (i = 0; i < N; i++)
cannam@19 246 free(xi[t][i]);
cannam@19 247 free(xi[t]);
cannam@19 248 }
cannam@19 249 free(gamma);
cannam@19 250 free(xi);
cannam@19 251 free(b);
cannam@19 252
cannam@19 253 for (i = 0; i < L; i++)
cannam@19 254 free(icov[i]);
cannam@19 255 free(icov);
cannam@19 256
cannam@19 257 free(gauss_y);
cannam@19 258 free(gauss_z);
cannam@19 259 }
cannam@19 260
cannam@19 261 void mlss_reestimate(double* p0, double** a, double** mu, double** cov, int N, int T, int L, int* q, double** x)
cannam@19 262 {
cannam@19 263 /* fit a single Gaussian to observations in each state */
cannam@19 264
cannam@19 265 /* calculate the mean observation in each state */
cannam@19 266
cannam@19 267 /* calculate the overall covariance */
cannam@19 268
cannam@19 269 /* count transitions */
cannam@19 270
cannam@19 271 /* estimate initial probs from transitions (???) */
cannam@19 272 }
cannam@19 273
cannam@19 274 void baum_welch(double* p0, double** a, double** mu, double** cov, int N, int T, int L, double** x, double*** xi, double** gamma)
cannam@19 275 {
cannam@19 276 int i, j, t;
cannam@19 277
cannam@19 278 double* sum_gamma = (double*) malloc(N*sizeof(double));
cannam@19 279
cannam@19 280 /* temporary memory */
cannam@19 281 double* u = (double*) malloc(L*L*sizeof(double));
cannam@19 282 double* yy = (double*) malloc(T*L*sizeof(double));
cannam@19 283 double* yy2 = (double*) malloc(T*L*sizeof(double));
cannam@19 284
cannam@19 285 /* re-estimate transition probs */
cannam@19 286 for (i = 0; i < N; i++)
cannam@19 287 {
cannam@19 288 sum_gamma[i] = 0;
cannam@19 289 for (t = 0; t < T-1; t++)
cannam@19 290 sum_gamma[i] += gamma[t][i];
cannam@19 291 }
cannam@19 292
cannam@19 293 for (i = 0; i < N; i++)
cannam@19 294 {
cannam@19 295 if (sum_gamma[i] == 0)
cannam@19 296 {
cannam@58 297 /* fprintf(stderr, "sum_gamma[%d] was zero...\n", i); */
cannam@19 298 }
cannam@19 299 //double s = 0;
cannam@19 300 for (j = 0; j < N; j++)
cannam@19 301 {
cannam@19 302 a[i][j] = 0;
cannam@30 303 if (sum_gamma[i] == 0.) continue;
cannam@19 304 for (t = 0; t < T-1; t++)
cannam@19 305 a[i][j] += xi[t][i][j];
cannam@19 306 //s += a[i][j];
cannam@19 307 a[i][j] /= sum_gamma[i];
cannam@19 308 }
cannam@19 309 /*
cannam@19 310 for (j = 0; j < N; j++)
cannam@19 311 {
cannam@19 312 a[i][j] /= s;
cannam@19 313 }
cannam@19 314 */
cannam@19 315 }
cannam@19 316
cannam@19 317 /* NB: now we need to sum gamma over all t */
cannam@19 318 for (i = 0; i < N; i++)
cannam@19 319 sum_gamma[i] += gamma[T-1][i];
cannam@19 320
cannam@19 321 /* re-estimate initial probs */
cannam@19 322 for (i = 0; i < N; i++)
cannam@19 323 p0[i] = gamma[0][i];
cannam@19 324
cannam@19 325 /* re-estimate covariance */
cannam@19 326 int d, e;
cannam@19 327 double sum_sum_gamma = 0;
cannam@19 328 for (i = 0; i < N; i++)
cannam@19 329 sum_sum_gamma += sum_gamma[i];
cannam@19 330
cannam@19 331 /*
cannam@19 332 for (d = 0; d < L; d++)
cannam@19 333 {
cannam@19 334 for (e = d; e < L; e++)
cannam@19 335 {
cannam@19 336 cov[d][e] = 0;
cannam@19 337 for (t = 0; t < T; t++)
cannam@19 338 for (j = 0; j < N; j++)
cannam@19 339 cov[d][e] += gamma[t][j] * (x[t][d] - mu[j][d]) * (x[t][e] - mu[j][e]);
cannam@19 340
cannam@19 341 cov[d][e] /= sum_sum_gamma;
cannam@19 342
cannam@79 343 if (ISNAN(cov[d][e]))
cannam@19 344 {
cannam@19 345 printf("cov[%d][%d] was nan\n", d, e);
cannam@19 346 for (j = 0; j < N; j++)
cannam@19 347 for (i = 0; i < L; i++)
cannam@79 348 if (ISNAN(mu[j][i]))
cannam@19 349 printf("mu[%d][%d] was nan\n", j, i);
cannam@19 350 for (t = 0; t < T; t++)
cannam@19 351 for (j = 0; j < N; j++)
cannam@79 352 if (ISNAN(gamma[t][j]))
cannam@19 353 printf("gamma[%d][%d] was nan\n", t, j);
cannam@19 354 exit(-1);
cannam@19 355 }
cannam@19 356 }
cannam@19 357 }
cannam@19 358 for (d = 0; d < L; d++)
cannam@19 359 for (e = 0; e < d; e++)
cannam@19 360 cov[d][e] = cov[e][d];
cannam@19 361 */
cannam@19 362
cannam@19 363 /* using BLAS */
cannam@19 364 for (d = 0; d < L; d++)
cannam@19 365 for (e = 0; e < L; e++)
cannam@19 366 cov[d][e] = 0;
cannam@19 367
cannam@19 368 for (j = 0; j < N; j++)
cannam@19 369 {
cannam@19 370 for (d = 0; d < L; d++)
cannam@19 371 for (t = 0; t < T; t++)
cannam@19 372 {
cannam@19 373 yy[d*T+t] = x[t][d] - mu[j][d];
cannam@19 374 yy2[d*T+t] = gamma[t][j] * (x[t][d] - mu[j][d]);
cannam@19 375 }
cannam@19 376
cannam@19 377 cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, L, L, T, 1.0, yy, T, yy2, T, 0, u, L);
cannam@19 378
cannam@19 379 for (e = 0; e < L; e++)
cannam@19 380 for (d = 0; d < L; d++)
cannam@19 381 cov[d][e] += u[e*L+d];
cannam@19 382 }
cannam@19 383
cannam@19 384 for (d = 0; d < L; d++)
cannam@19 385 for (e = 0; e < L; e++)
cannam@19 386 cov[d][e] /= T; /* sum_sum_gamma; */
cannam@19 387
cannam@19 388 //printf("sum_sum_gamma = %f\n", sum_sum_gamma); /* fine, = T IS THIS ALWAYS TRUE with pooled cov?? */
cannam@19 389
cannam@19 390 /* re-estimate means */
cannam@19 391 for (j = 0; j < N; j++)
cannam@19 392 {
cannam@19 393 for (d = 0; d < L; d++)
cannam@19 394 {
cannam@19 395 mu[j][d] = 0;
cannam@19 396 for (t = 0; t < T; t++)
cannam@19 397 mu[j][d] += gamma[t][j] * x[t][d];
cannam@19 398 mu[j][d] /= sum_gamma[j];
cannam@19 399 }
cannam@19 400 }
cannam@19 401
cannam@19 402 /* deallocate memory */
cannam@19 403 free(sum_gamma);
cannam@19 404 free(yy);
cannam@19 405 free(yy2);
cannam@19 406 free(u);
cannam@19 407 }
cannam@19 408
cannam@19 409 void forward_backwards(double*** xi, double** gamma, double* loglik, double* loglik1, double* loglik2, int iter, int N, int T, double* p0, double** a, double** b)
cannam@19 410 {
cannam@19 411 /* forwards-backwards with scaling */
cannam@19 412 int i, j, t;
cannam@19 413
cannam@19 414 double** alpha = (double**) malloc(T*sizeof(double*));
cannam@19 415 double** beta = (double**) malloc(T*sizeof(double*));
cannam@19 416 for (t = 0; t < T; t++)
cannam@19 417 {
cannam@19 418 alpha[t] = (double*) malloc(N*sizeof(double));
cannam@19 419 beta[t] = (double*) malloc(N*sizeof(double));
cannam@19 420 }
cannam@19 421
cannam@19 422 /* scaling coefficients */
cannam@19 423 double* c = (double*) malloc(T*sizeof(double));
cannam@19 424
cannam@19 425 /* calculate forward probs and scale coefficients */
cannam@19 426 c[0] = 0;
cannam@19 427 for (i = 0; i < N; i++)
cannam@19 428 {
cannam@19 429 alpha[0][i] = p0[i] * b[0][i];
cannam@19 430 c[0] += alpha[0][i];
cannam@19 431
cannam@19 432 //printf("p0[%d] = %f, b[0][%d] = %f\n", i, p0[i], i, b[0][i]);
cannam@19 433 }
cannam@19 434 c[0] = 1 / c[0];
cannam@19 435 for (i = 0; i < N; i++)
cannam@19 436 {
cannam@19 437 alpha[0][i] *= c[0];
cannam@19 438
cannam@19 439 //printf("alpha[0][%d] = %f\n", i, alpha[0][i]); /* OK agrees with Matlab */
cannam@19 440 }
cannam@19 441
cannam@19 442 *loglik1 = *loglik;
cannam@19 443 *loglik = -log(c[0]);
cannam@19 444 if (iter == 2)
cannam@19 445 *loglik2 = *loglik;
cannam@19 446
cannam@19 447 for (t = 1; t < T; t++)
cannam@19 448 {
cannam@19 449 c[t] = 0;
cannam@19 450 for (j = 0; j < N; j++)
cannam@19 451 {
cannam@19 452 alpha[t][j] = 0;
cannam@19 453 for (i = 0; i < N; i++)
cannam@19 454 alpha[t][j] += alpha[t-1][i] * a[i][j];
cannam@19 455 alpha[t][j] *= b[t][j];
cannam@19 456
cannam@19 457 c[t] += alpha[t][j];
cannam@19 458 }
cannam@19 459
cannam@19 460 /*
cannam@19 461 if (c[t] == 0)
cannam@19 462 {
cannam@19 463 printf("c[%d] = 0, going to blow up so exiting\n", t);
cannam@19 464 for (i = 0; i < N; i++)
cannam@19 465 if (b[t][i] == 0)
cannam@19 466 fprintf(stderr, "b[%d][%d] was zero\n", t, i);
cannam@19 467 fprintf(stderr, "x[t] was \n");
cannam@19 468 for (i = 0; i < L; i++)
cannam@19 469 fprintf(stderr, "%f ", x[t][i]);
cannam@19 470 fprintf(stderr, "\n\n");
cannam@19 471 exit(-1);
cannam@19 472 }
cannam@19 473 */
cannam@19 474
cannam@19 475 c[t] = 1 / c[t];
cannam@19 476 for (j = 0; j < N; j++)
cannam@19 477 alpha[t][j] *= c[t];
cannam@19 478
cannam@19 479 //printf("c[%d] = %e\n", t, c[t]);
cannam@19 480
cannam@19 481 *loglik -= log(c[t]);
cannam@19 482 }
cannam@19 483
cannam@19 484 /* calculate backwards probs using same coefficients */
cannam@19 485 for (i = 0; i < N; i++)
cannam@19 486 beta[T-1][i] = 1;
cannam@19 487 t = T - 1;
cannam@19 488 while (1)
cannam@19 489 {
cannam@19 490 for (i = 0; i < N; i++)
cannam@19 491 beta[t][i] *= c[t];
cannam@19 492
cannam@19 493 if (t == 0)
cannam@19 494 break;
cannam@19 495
cannam@19 496 for (i = 0; i < N; i++)
cannam@19 497 {
cannam@19 498 beta[t-1][i] = 0;
cannam@19 499 for (j = 0; j < N; j++)
cannam@19 500 beta[t-1][i] += a[i][j] * b[t][j] * beta[t][j];
cannam@19 501 }
cannam@19 502
cannam@19 503 t--;
cannam@19 504 }
cannam@19 505
cannam@19 506 /*
cannam@19 507 printf("alpha:\n");
cannam@19 508 for (t = 0; t < T; t++)
cannam@19 509 {
cannam@19 510 for (i = 0; i < N; i++)
cannam@19 511 printf("%4.4e\t\t", alpha[t][i]);
cannam@19 512 printf("\n");
cannam@19 513 }
cannam@19 514 printf("\n\n");printf("beta:\n");
cannam@19 515 for (t = 0; t < T; t++)
cannam@19 516 {
cannam@19 517 for (i = 0; i < N; i++)
cannam@19 518 printf("%4.4e\t\t", beta[t][i]);
cannam@19 519 printf("\n");
cannam@19 520 }
cannam@19 521 printf("\n\n");
cannam@19 522 */
cannam@19 523
cannam@19 524 /* calculate posterior probs */
cannam@19 525 double tot;
cannam@19 526 for (t = 0; t < T; t++)
cannam@19 527 {
cannam@19 528 tot = 0;
cannam@19 529 for (i = 0; i < N; i++)
cannam@19 530 {
cannam@19 531 gamma[t][i] = alpha[t][i] * beta[t][i];
cannam@19 532 tot += gamma[t][i];
cannam@19 533 }
cannam@19 534 for (i = 0; i < N; i++)
cannam@19 535 {
cannam@19 536 gamma[t][i] /= tot;
cannam@19 537
cannam@19 538 //printf("gamma[%d][%d] = %f\n", t, i, gamma[t][i]);
cannam@19 539 }
cannam@19 540 }
cannam@19 541
cannam@19 542 for (t = 0; t < T-1; t++)
cannam@19 543 {
cannam@19 544 tot = 0;
cannam@19 545 for (i = 0; i < N; i++)
cannam@19 546 {
cannam@19 547 for (j = 0; j < N; j++)
cannam@19 548 {
cannam@19 549 xi[t][i][j] = alpha[t][i] * a[i][j] * b[t+1][j] * beta[t+1][j];
cannam@19 550 tot += xi[t][i][j];
cannam@19 551 }
cannam@19 552 }
cannam@19 553 for (i = 0; i < N; i++)
cannam@19 554 for (j = 0; j < N; j++)
cannam@19 555 xi[t][i][j] /= tot;
cannam@19 556 }
cannam@19 557
cannam@19 558 /*
cannam@19 559 // CHECK - fine
cannam@19 560 // gamma[t][i] = \sum_j{xi[t][i][j]}
cannam@19 561 tot = 0;
cannam@19 562 for (j = 0; j < N; j++)
cannam@19 563 tot += xi[3][1][j];
cannam@19 564 printf("gamma[3][1] = %f, sum_j(xi[3][1][j]) = %f\n", gamma[3][1], tot);
cannam@19 565 */
cannam@19 566
cannam@19 567 for (t = 0; t < T; t++)
cannam@19 568 {
cannam@19 569 free(alpha[t]);
cannam@19 570 free(beta[t]);
cannam@19 571 }
cannam@19 572 free(alpha);
cannam@19 573 free(beta);
cannam@19 574 free(c);
cannam@19 575 }
cannam@19 576
cannam@19 577 void viterbi_decode(double** x, int T, model_t* model, int* q)
cannam@19 578 {
cannam@19 579 int i, j, t;
cannam@19 580 double max;
cannam@48 581 int havemax;
cannam@19 582
cannam@19 583 int N = model->N;
cannam@19 584 int L = model->L;
cannam@19 585 double* p0 = model->p0;
cannam@19 586 double** a = model->a;
cannam@19 587 double** mu = model->mu;
cannam@19 588 double** cov = model->cov;
cannam@19 589
cannam@19 590 /* inverse covariance and its determinant */
cannam@19 591 double** icov = (double**) malloc(L*sizeof(double*));
cannam@19 592 for (i = 0; i < L; i++)
cannam@19 593 icov[i] = (double*) malloc(L*sizeof(double));
cannam@19 594 double detcov;
cannam@19 595
cannam@19 596 double** logb = (double**) malloc(T*sizeof(double*));
cannam@19 597 double** phi = (double**) malloc(T*sizeof(double*));
cannam@19 598 int** psi = (int**) malloc(T*sizeof(int*));
cannam@19 599 for (t = 0; t < T; t++)
cannam@19 600 {
cannam@19 601 logb[t] = (double*) malloc(N*sizeof(double));
cannam@19 602 phi[t] = (double*) malloc(N*sizeof(double));
cannam@19 603 psi[t] = (int*) malloc(N*sizeof(int));
cannam@19 604 }
cannam@19 605
cannam@19 606 /* temporary memory */
cannam@19 607 double* gauss_y = (double*) malloc(L*sizeof(double));
cannam@19 608 double* gauss_z = (double*) malloc(L*sizeof(double));
cannam@19 609
cannam@19 610 /* calculate observation logprobs */
cannam@19 611 invert(cov, L, icov, &detcov);
cannam@19 612 for (t = 0; t < T; t++)
cannam@19 613 for (i = 0; i < N; i++)
cannam@19 614 logb[t][i] = loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z);
cannam@19 615
cannam@19 616 /* initialise */
cannam@19 617 for (i = 0; i < N; i++)
cannam@19 618 {
cannam@19 619 phi[0][i] = log(p0[i]) + logb[0][i];
cannam@19 620 psi[0][i] = 0;
cannam@19 621 }
cannam@19 622
cannam@19 623 for (t = 1; t < T; t++)
cannam@19 624 {
cannam@19 625 for (j = 0; j < N; j++)
cannam@19 626 {
cannam@48 627 max = -1000000;
cannam@48 628 havemax = 0;
cannam@48 629
cannam@19 630 psi[t][j] = 0;
cannam@19 631 for (i = 0; i < N; i++)
cannam@19 632 {
cannam@48 633 if (phi[t-1][i] + log(a[i][j]) > max || !havemax)
cannam@19 634 {
cannam@19 635 max = phi[t-1][i] + log(a[i][j]);
cannam@19 636 phi[t][j] = max + logb[t][j];
cannam@19 637 psi[t][j] = i;
cannam@48 638 havemax = 1;
cannam@19 639 }
cannam@19 640 }
cannam@19 641 }
cannam@19 642 }
cannam@19 643
cannam@19 644 /* find maximising state at time T-1 */
cannam@19 645 max = phi[T-1][0];
cannam@19 646 q[T-1] = 0;
cannam@19 647 for (i = 1; i < N; i++)
cannam@19 648 {
cannam@19 649 if (phi[T-1][i] > max)
cannam@19 650 {
cannam@19 651 max = phi[T-1][i];
cannam@19 652 q[T-1] = i;
cannam@19 653 }
cannam@19 654 }
cannam@19 655
cannam@19 656
cannam@19 657 /* track back */
cannam@19 658 t = T - 2;
cannam@19 659 while (t >= 0)
cannam@19 660 {
cannam@19 661 q[t] = psi[t+1][q[t+1]];
cannam@19 662 t--;
cannam@19 663 }
cannam@19 664
cannam@19 665 /* de-allocate memory */
cannam@19 666 for (i = 0; i < L; i++)
cannam@19 667 free(icov[i]);
cannam@19 668 free(icov);
cannam@19 669 for (t = 0; t < T; t++)
cannam@19 670 {
cannam@19 671 free(logb[t]);
cannam@19 672 free(phi[t]);
cannam@19 673 free(psi[t]);
cannam@19 674 }
cannam@19 675 free(logb);
cannam@19 676 free(phi);
cannam@19 677 free(psi);
cannam@19 678
cannam@19 679 free(gauss_y);
cannam@19 680 free(gauss_z);
cannam@19 681 }
cannam@19 682
cannam@19 683 /* invert matrix and calculate determinant using LAPACK */
cannam@19 684 void invert(double** cov, int L, double** icov, double* detcov)
cannam@19 685 {
cannam@19 686 /* copy square matrix into a vector in column-major order */
cannam@19 687 double* a = (double*) malloc(L*L*sizeof(double));
cannam@19 688 int i, j;
cannam@19 689 for(j=0; j < L; j++)
cannam@19 690 for (i=0; i < L; i++)
cannam@19 691 a[j*L+i] = cov[i][j];
cannam@19 692
cannam@44 693 int M = (int) L;
cannam@44 694 int* ipiv = (int *) malloc(L*L*sizeof(int));
cannam@44 695 int ret;
cannam@19 696
cannam@19 697 /* LU decomposition */
cannam@19 698 ret = dgetrf_(&M, &M, a, &M, ipiv, &ret); /* ret should be zero, negative if cov is singular */
cannam@19 699 if (ret < 0)
cannam@19 700 {
cannam@19 701 fprintf(stderr, "Covariance matrix was singular, couldn't invert\n");
cannam@19 702 exit(-1);
cannam@19 703 }
cannam@19 704
cannam@19 705 /* find determinant */
cannam@19 706 double det = 1;
cannam@19 707 for(i = 0; i < L; i++)
cannam@19 708 det *= a[i*L+i];
cannam@19 709 // TODO: get this to work!!! If detcov < 0 then cov is bad anyway...
cannam@19 710 /*
cannam@19 711 int sign = 1;
cannam@19 712 for (i = 0; i < L; i++)
cannam@19 713 if (ipiv[i] != i)
cannam@19 714 sign = -sign;
cannam@19 715 det *= sign;
cannam@19 716 */
cannam@19 717 if (det < 0)
cannam@19 718 det = -det;
cannam@19 719 *detcov = det;
cannam@19 720
cannam@19 721 /* allocate required working storage */
cannam@44 722 #ifndef HAVE_ATLAS
cannam@44 723 int lwork = -1;
cannam@44 724 double lwbest = 0.0;
cannam@19 725 dgetri_(&M, a, &M, ipiv, &lwbest, &lwork, &ret);
cannam@44 726 lwork = (int) lwbest;
cannam@19 727 double* work = (double*) malloc(lwork*sizeof(double));
cannam@44 728 #endif
cannam@19 729
cannam@19 730 /* find inverse */
cannam@19 731 dgetri_(&M, a, &M, ipiv, work, &lwork, &ret);
cannam@44 732
cannam@19 733 for(j=0; j < L; j++)
cannam@19 734 for (i=0; i < L; i++)
cannam@19 735 icov[i][j] = a[j*L+i];
cannam@19 736
cannam@44 737 #ifndef HAVE_ATLAS
cannam@19 738 free(work);
cannam@44 739 #endif
cannam@19 740 free(a);
cannam@19 741 }
cannam@19 742
cannam@19 743 /* probability of multivariate Gaussian given mean, inverse and determinant of covariance */
cannam@19 744 double gauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
cannam@19 745 {
cannam@19 746 int i, j;
cannam@19 747 double s = 0;
cannam@19 748 for (i = 0; i < L; i++)
cannam@19 749 y[i] = x[i] - mu[i];
cannam@19 750 for (i = 0; i < L; i++)
cannam@19 751 {
cannam@19 752 //z[i] = 0;
cannam@19 753 //for (j = 0; j < L; j++)
cannam@19 754 // z[i] += icov[i][j] * y[j];
cannam@19 755 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
cannam@19 756 }
cannam@19 757 s = cblas_ddot(L, z, 1, y, 1);
cannam@19 758 //for (i = 0; i < L; i++)
cannam@19 759 // s += z[i] * y[i];
cannam@19 760
cannam@19 761 return exp(-s/2.0) / (pow(2*PI, L/2.0) * sqrt(detcov));
cannam@19 762 }
cannam@19 763
cannam@19 764 /* log probability of multivariate Gaussian given mean, inverse and determinant of covariance */
cannam@19 765 double loggauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
cannam@19 766 {
cannam@19 767 int i, j;
cannam@19 768 double s = 0;
cannam@19 769 double ret;
cannam@19 770 for (i = 0; i < L; i++)
cannam@19 771 y[i] = x[i] - mu[i];
cannam@19 772 for (i = 0; i < L; i++)
cannam@19 773 {
cannam@19 774 //z[i] = 0;
cannam@19 775 //for (j = 0; j < L; j++)
cannam@19 776 // z[i] += icov[i][j] * y[j];
cannam@19 777 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
cannam@19 778 }
cannam@19 779 s = cblas_ddot(L, z, 1, y, 1);
cannam@19 780 //for (i = 0; i < L; i++)
cannam@19 781 // s += z[i] * y[i];
cannam@19 782
cannam@19 783 ret = -0.5 * (s + L * log(2*PI) + log(detcov));
cannam@19 784
cannam@19 785 /*
cannam@19 786 // TEST
cannam@79 787 if (ISINF(ret) > 0)
cannam@19 788 printf("loggauss returning infinity\n");
cannam@79 789 if (ISINF(ret) < 0)
cannam@19 790 printf("loggauss returning -infinity\n");
cannam@79 791 if (ISNAN(ret))
cannam@19 792 printf("loggauss returning nan\n");
cannam@19 793 */
cannam@19 794
cannam@19 795 return ret;
cannam@19 796 }
cannam@19 797
cannam@19 798 void hmm_print(model_t* model)
cannam@19 799 {
cannam@19 800 int i, j;
cannam@19 801 printf("p0:\n");
cannam@19 802 for (i = 0; i < model->N; i++)
cannam@19 803 printf("%f ", model->p0[i]);
cannam@19 804 printf("\n\n");
cannam@19 805 printf("a:\n");
cannam@19 806 for (i = 0; i < model->N; i++)
cannam@19 807 {
cannam@19 808 for (j = 0; j < model->N; j++)
cannam@19 809 printf("%f ", model->a[i][j]);
cannam@19 810 printf("\n");
cannam@19 811 }
cannam@19 812 printf("\n\n");
cannam@19 813 printf("mu:\n");
cannam@19 814 for (i = 0; i < model->N; i++)
cannam@19 815 {
cannam@19 816 for (j = 0; j < model->L; j++)
cannam@19 817 printf("%f ", model->mu[i][j]);
cannam@19 818 printf("\n");
cannam@19 819 }
cannam@19 820 printf("\n\n");
cannam@19 821 printf("cov:\n");
cannam@19 822 for (i = 0; i < model->L; i++)
cannam@19 823 {
cannam@19 824 for (j = 0; j < model->L; j++)
cannam@19 825 printf("%f ", model->cov[i][j]);
cannam@19 826 printf("\n");
cannam@19 827 }
cannam@19 828 printf("\n\n");
cannam@19 829 }
cannam@19 830
cannam@19 831