annotate hmm/hmm.c @ 48:03abd5957853

* Fix read from uninitialised memory in hmm code
author cannam
date Tue, 11 Nov 2008 12:51:24 +0000
parents 00603b8a940f
children d72fcd34d9a7
rev   line source
cannam@19 1 /*
cannam@19 2 * hmm.c
cannam@19 3 * soundbite
cannam@19 4 *
cannam@19 5 * Created by Mark Levy on 12/02/2006.
cannam@19 6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved.
cannam@19 7 *
cannam@19 8 */
cannam@19 9
cannam@19 10 #include <stdio.h>
cannam@19 11 #include <math.h>
cannam@19 12 #include <stdlib.h>
cannam@19 13 #include <float.h>
cannam@19 14 #include <time.h> /* to seed random number generator */
cannam@44 15
cannam@19 16 #include <clapack.h> /* LAPACK for matrix inversion */
cannam@44 17
cannam@44 18 #ifdef ATLAS_ORDER
cannam@44 19 #define HAVE_ATLAS 1
cannam@44 20 #endif
cannam@44 21
cannam@44 22 #ifdef HAVE_ATLAS
cannam@44 23 // Using ATLAS C interface to LAPACK
cannam@44 24 #define dgetrf_(m, n, a, lda, ipiv, info) \
cannam@44 25 clapack_dgetrf(CblasColMajor, *m, *n, a, *lda, ipiv)
cannam@44 26 #define dgetri_(n, a, lda, ipiv, work, lwork, info) \
cannam@44 27 clapack_dgetri(CblasColMajor, *n, a, *lda, ipiv)
cannam@44 28 #endif
cannam@44 29
cannam@19 30 #ifdef _MAC_OS_X
cannam@19 31 #include <vecLib/cblas.h>
cannam@19 32 #else
cannam@19 33 #include <cblas.h> /* BLAS for matrix multiplication */
cannam@19 34 #endif
cannam@19 35
cannam@19 36 #include "hmm.h"
cannam@19 37
cannam@19 38 model_t* hmm_init(double** x, int T, int L, int N)
cannam@19 39 {
cannam@19 40 int i, j, d, e, t;
cannam@19 41 double s, ss;
cannam@19 42
cannam@19 43 model_t* model;
cannam@19 44 model = (model_t*) malloc(sizeof(model_t));
cannam@19 45 model->N = N;
cannam@19 46 model->L = L;
cannam@19 47 model->p0 = (double*) malloc(N*sizeof(double));
cannam@19 48 model->a = (double**) malloc(N*sizeof(double*));
cannam@19 49 model->mu = (double**) malloc(N*sizeof(double*));
cannam@19 50 for (i = 0; i < N; i++)
cannam@19 51 {
cannam@19 52 model->a[i] = (double*) malloc(N*sizeof(double));
cannam@19 53 model->mu[i] = (double*) malloc(L*sizeof(double));
cannam@19 54 }
cannam@19 55 model->cov = (double**) malloc(L*sizeof(double*));
cannam@19 56 for (i = 0; i < L; i++)
cannam@19 57 model->cov[i] = (double*) malloc(L*sizeof(double));
cannam@19 58
cannam@19 59 srand(time(0));
cannam@19 60 double* global_mean = (double*) malloc(L*sizeof(double));
cannam@19 61
cannam@19 62 /* find global mean */
cannam@19 63 for (d = 0; d < L; d++)
cannam@19 64 {
cannam@19 65 global_mean[d] = 0;
cannam@19 66 for (t = 0; t < T; t++)
cannam@19 67 global_mean[d] += x[t][d];
cannam@19 68 global_mean[d] /= T;
cannam@19 69 }
cannam@19 70
cannam@19 71 /* calculate global diagonal covariance */
cannam@19 72 for (d = 0; d < L; d++)
cannam@19 73 {
cannam@19 74 for (e = 0; e < L; e++)
cannam@19 75 model->cov[d][e] = 0;
cannam@19 76 for (t = 0; t < T; t++)
cannam@19 77 model->cov[d][d] += (x[t][d] - global_mean[d]) * (x[t][d] - global_mean[d]);
cannam@19 78 model->cov[d][d] /= T-1;
cannam@19 79 }
cannam@19 80
cannam@19 81 /* set all means close to global mean */
cannam@19 82 for (i = 0; i < N; i++)
cannam@19 83 {
cannam@19 84 for (d = 0; d < L; d++)
cannam@19 85 {
cannam@19 86 /* add some random noise related to covariance */
cannam@19 87 /* ideally the random number would be Gaussian(0,1), as a hack we make it uniform on [-0.25,0.25] */
cannam@19 88 model->mu[i][d] = global_mean[d] + (0.5 * rand() / (double) RAND_MAX - 0.25) * sqrt(model->cov[d][d]);
cannam@19 89 }
cannam@19 90 }
cannam@19 91
cannam@19 92 /* random intial and transition probs */
cannam@19 93 s = 0;
cannam@19 94 for (i = 0; i < N; i++)
cannam@19 95 {
cannam@19 96 model->p0[i] = 1 + rand() / (double) RAND_MAX;
cannam@19 97 s += model->p0[i];
cannam@19 98 ss = 0;
cannam@19 99 for (j = 0; j < N; j++)
cannam@19 100 {
cannam@19 101 model->a[i][j] = 1 + rand() / (double) RAND_MAX;
cannam@19 102 ss += model->a[i][j];
cannam@19 103 }
cannam@19 104 for (j = 0; j < N; j++)
cannam@19 105 {
cannam@19 106 model->a[i][j] /= ss;
cannam@19 107 }
cannam@19 108 }
cannam@19 109 for (i = 0; i < N; i++)
cannam@19 110 model->p0[i] /= s;
cannam@19 111
cannam@19 112 free(global_mean);
cannam@19 113
cannam@19 114 return model;
cannam@19 115 }
cannam@19 116
cannam@19 117 void hmm_close(model_t* model)
cannam@19 118 {
cannam@19 119 int i;
cannam@19 120
cannam@19 121 for (i = 0; i < model->N; i++)
cannam@19 122 {
cannam@19 123 free(model->a[i]);
cannam@19 124 free(model->mu[i]);
cannam@19 125 }
cannam@19 126 free(model->a);
cannam@19 127 free(model->mu);
cannam@19 128 for (i = 0; i < model->L; i++)
cannam@19 129 free(model->cov[i]);
cannam@19 130 free(model->cov);
cannam@19 131 free(model);
cannam@19 132 }
cannam@19 133
cannam@19 134 void hmm_train(double** x, int T, model_t* model)
cannam@19 135 {
cannam@19 136 int i, t;
cannam@19 137 double loglik; /* overall log-likelihood at each iteration */
cannam@19 138
cannam@19 139 int N = model->N;
cannam@19 140 int L = model->L;
cannam@19 141 double* p0 = model->p0;
cannam@19 142 double** a = model->a;
cannam@19 143 double** mu = model->mu;
cannam@19 144 double** cov = model->cov;
cannam@19 145
cannam@19 146 /* allocate memory */
cannam@19 147 double** gamma = (double**) malloc(T*sizeof(double*));
cannam@19 148 double*** xi = (double***) malloc(T*sizeof(double**));
cannam@19 149 for (t = 0; t < T; t++)
cannam@19 150 {
cannam@19 151 gamma[t] = (double*) malloc(N*sizeof(double));
cannam@19 152 xi[t] = (double**) malloc(N*sizeof(double*));
cannam@19 153 for (i = 0; i < N; i++)
cannam@19 154 xi[t][i] = (double*) malloc(N*sizeof(double));
cannam@19 155 }
cannam@19 156
cannam@19 157 /* temporary memory */
cannam@19 158 double* gauss_y = (double*) malloc(L*sizeof(double));
cannam@19 159 double* gauss_z = (double*) malloc(L*sizeof(double));
cannam@19 160
cannam@19 161 /* obs probs P(j|{x}) */
cannam@19 162 double** b = (double**) malloc(T*sizeof(double*));
cannam@19 163 for (t = 0; t < T; t++)
cannam@19 164 b[t] = (double*) malloc(N*sizeof(double));
cannam@19 165
cannam@19 166 /* inverse covariance and its determinant */
cannam@19 167 double** icov = (double**) malloc(L*sizeof(double*));
cannam@19 168 for (i = 0; i < L; i++)
cannam@19 169 icov[i] = (double*) malloc(L*sizeof(double));
cannam@19 170 double detcov;
cannam@19 171
cannam@19 172 double thresh = 0.0001;
cannam@19 173 int niter = 50;
cannam@19 174 int iter = 0;
cannam@19 175 double loglik1, loglik2;
cannam@30 176 int foundnan = 0;
cannam@30 177
cannam@30 178 while (iter < niter && !foundnan && !(iter > 1 && (loglik - loglik1) < thresh * (loglik1 - loglik2)))
cannam@19 179 {
cannam@19 180 ++iter;
cannam@19 181
cannam@19 182 fprintf(stderr, "calculating obsprobs...\n");
cannam@19 183 fflush(stderr);
cannam@19 184
cannam@19 185 /* precalculate obs probs */
cannam@19 186 invert(cov, L, icov, &detcov);
cannam@19 187
cannam@19 188 for (t = 0; t < T; t++)
cannam@19 189 {
cannam@19 190 //int allzero = 1;
cannam@19 191 for (i = 0; i < N; i++)
cannam@19 192 {
cannam@19 193 b[t][i] = exp(loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z));
cannam@19 194
cannam@19 195 //if (b[t][i] != 0)
cannam@19 196 // allzero = 0;
cannam@19 197 }
cannam@19 198 /*
cannam@19 199 if (allzero)
cannam@19 200 {
cannam@19 201 printf("all the b[t][i] were zero for t = %d, correcting...\n", t);
cannam@19 202 for (i = 0; i < N; i++)
cannam@19 203 {
cannam@19 204 b[t][i] = 0.00001;
cannam@19 205 }
cannam@19 206 }
cannam@19 207 */
cannam@19 208 }
cannam@19 209
cannam@19 210 fprintf(stderr, "forwards-backwards...\n");
cannam@19 211 fflush(stderr);
cannam@19 212
cannam@19 213 forward_backwards(xi, gamma, &loglik, &loglik1, &loglik2, iter, N, T, p0, a, b);
cannam@19 214
cannam@19 215 fprintf(stderr, "iteration %d: loglik = %f\n", iter, loglik);
cannam@19 216 fprintf(stderr, "re-estimation...\n");
cannam@19 217 fflush(stderr);
cannam@30 218
cannam@30 219 if (isnan(loglik)) {
cannam@30 220 foundnan = 1;
cannam@30 221 continue;
cannam@30 222 }
cannam@19 223
cannam@19 224 baum_welch(p0, a, mu, cov, N, T, L, x, xi, gamma);
cannam@19 225
cannam@19 226 /*
cannam@19 227 printf("a:\n");
cannam@19 228 for (i = 0; i < model->N; i++)
cannam@19 229 {
cannam@19 230 for (j = 0; j < model->N; j++)
cannam@19 231 printf("%f ", model->a[i][j]);
cannam@19 232 printf("\n");
cannam@19 233 }
cannam@19 234 printf("\n\n");
cannam@19 235 */
cannam@19 236 //hmm_print(model);
cannam@19 237 }
cannam@19 238
cannam@19 239 /* deallocate memory */
cannam@19 240 for (t = 0; t < T; t++)
cannam@19 241 {
cannam@19 242 free(gamma[t]);
cannam@19 243 free(b[t]);
cannam@19 244 for (i = 0; i < N; i++)
cannam@19 245 free(xi[t][i]);
cannam@19 246 free(xi[t]);
cannam@19 247 }
cannam@19 248 free(gamma);
cannam@19 249 free(xi);
cannam@19 250 free(b);
cannam@19 251
cannam@19 252 for (i = 0; i < L; i++)
cannam@19 253 free(icov[i]);
cannam@19 254 free(icov);
cannam@19 255
cannam@19 256 free(gauss_y);
cannam@19 257 free(gauss_z);
cannam@19 258 }
cannam@19 259
cannam@19 260 void mlss_reestimate(double* p0, double** a, double** mu, double** cov, int N, int T, int L, int* q, double** x)
cannam@19 261 {
cannam@19 262 /* fit a single Gaussian to observations in each state */
cannam@19 263
cannam@19 264 /* calculate the mean observation in each state */
cannam@19 265
cannam@19 266 /* calculate the overall covariance */
cannam@19 267
cannam@19 268 /* count transitions */
cannam@19 269
cannam@19 270 /* estimate initial probs from transitions (???) */
cannam@19 271 }
cannam@19 272
cannam@19 273 void baum_welch(double* p0, double** a, double** mu, double** cov, int N, int T, int L, double** x, double*** xi, double** gamma)
cannam@19 274 {
cannam@19 275 int i, j, t;
cannam@19 276
cannam@19 277 double* sum_gamma = (double*) malloc(N*sizeof(double));
cannam@19 278
cannam@19 279 /* temporary memory */
cannam@19 280 double* u = (double*) malloc(L*L*sizeof(double));
cannam@19 281 double* yy = (double*) malloc(T*L*sizeof(double));
cannam@19 282 double* yy2 = (double*) malloc(T*L*sizeof(double));
cannam@19 283
cannam@19 284 /* re-estimate transition probs */
cannam@19 285 for (i = 0; i < N; i++)
cannam@19 286 {
cannam@19 287 sum_gamma[i] = 0;
cannam@19 288 for (t = 0; t < T-1; t++)
cannam@19 289 sum_gamma[i] += gamma[t][i];
cannam@19 290 }
cannam@19 291
cannam@19 292 for (i = 0; i < N; i++)
cannam@19 293 {
cannam@19 294 if (sum_gamma[i] == 0)
cannam@19 295 {
cannam@19 296 fprintf(stderr, "sum_gamma[%d] was zero...\n", i);
cannam@19 297 }
cannam@19 298 //double s = 0;
cannam@19 299 for (j = 0; j < N; j++)
cannam@19 300 {
cannam@19 301 a[i][j] = 0;
cannam@30 302 if (sum_gamma[i] == 0.) continue;
cannam@19 303 for (t = 0; t < T-1; t++)
cannam@19 304 a[i][j] += xi[t][i][j];
cannam@19 305 //s += a[i][j];
cannam@19 306 a[i][j] /= sum_gamma[i];
cannam@19 307 }
cannam@19 308 /*
cannam@19 309 for (j = 0; j < N; j++)
cannam@19 310 {
cannam@19 311 a[i][j] /= s;
cannam@19 312 }
cannam@19 313 */
cannam@19 314 }
cannam@19 315
cannam@19 316 /* NB: now we need to sum gamma over all t */
cannam@19 317 for (i = 0; i < N; i++)
cannam@19 318 sum_gamma[i] += gamma[T-1][i];
cannam@19 319
cannam@19 320 /* re-estimate initial probs */
cannam@19 321 for (i = 0; i < N; i++)
cannam@19 322 p0[i] = gamma[0][i];
cannam@19 323
cannam@19 324 /* re-estimate covariance */
cannam@19 325 int d, e;
cannam@19 326 double sum_sum_gamma = 0;
cannam@19 327 for (i = 0; i < N; i++)
cannam@19 328 sum_sum_gamma += sum_gamma[i];
cannam@19 329
cannam@19 330 /*
cannam@19 331 for (d = 0; d < L; d++)
cannam@19 332 {
cannam@19 333 for (e = d; e < L; e++)
cannam@19 334 {
cannam@19 335 cov[d][e] = 0;
cannam@19 336 for (t = 0; t < T; t++)
cannam@19 337 for (j = 0; j < N; j++)
cannam@19 338 cov[d][e] += gamma[t][j] * (x[t][d] - mu[j][d]) * (x[t][e] - mu[j][e]);
cannam@19 339
cannam@19 340 cov[d][e] /= sum_sum_gamma;
cannam@19 341
cannam@19 342 if (isnan(cov[d][e]))
cannam@19 343 {
cannam@19 344 printf("cov[%d][%d] was nan\n", d, e);
cannam@19 345 for (j = 0; j < N; j++)
cannam@19 346 for (i = 0; i < L; i++)
cannam@19 347 if (isnan(mu[j][i]))
cannam@19 348 printf("mu[%d][%d] was nan\n", j, i);
cannam@19 349 for (t = 0; t < T; t++)
cannam@19 350 for (j = 0; j < N; j++)
cannam@19 351 if (isnan(gamma[t][j]))
cannam@19 352 printf("gamma[%d][%d] was nan\n", t, j);
cannam@19 353 exit(-1);
cannam@19 354 }
cannam@19 355 }
cannam@19 356 }
cannam@19 357 for (d = 0; d < L; d++)
cannam@19 358 for (e = 0; e < d; e++)
cannam@19 359 cov[d][e] = cov[e][d];
cannam@19 360 */
cannam@19 361
cannam@19 362 /* using BLAS */
cannam@19 363 for (d = 0; d < L; d++)
cannam@19 364 for (e = 0; e < L; e++)
cannam@19 365 cov[d][e] = 0;
cannam@19 366
cannam@19 367 for (j = 0; j < N; j++)
cannam@19 368 {
cannam@19 369 for (d = 0; d < L; d++)
cannam@19 370 for (t = 0; t < T; t++)
cannam@19 371 {
cannam@19 372 yy[d*T+t] = x[t][d] - mu[j][d];
cannam@19 373 yy2[d*T+t] = gamma[t][j] * (x[t][d] - mu[j][d]);
cannam@19 374 }
cannam@19 375
cannam@19 376 cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, L, L, T, 1.0, yy, T, yy2, T, 0, u, L);
cannam@19 377
cannam@19 378 for (e = 0; e < L; e++)
cannam@19 379 for (d = 0; d < L; d++)
cannam@19 380 cov[d][e] += u[e*L+d];
cannam@19 381 }
cannam@19 382
cannam@19 383 for (d = 0; d < L; d++)
cannam@19 384 for (e = 0; e < L; e++)
cannam@19 385 cov[d][e] /= T; /* sum_sum_gamma; */
cannam@19 386
cannam@19 387 //printf("sum_sum_gamma = %f\n", sum_sum_gamma); /* fine, = T IS THIS ALWAYS TRUE with pooled cov?? */
cannam@19 388
cannam@19 389 /* re-estimate means */
cannam@19 390 for (j = 0; j < N; j++)
cannam@19 391 {
cannam@19 392 for (d = 0; d < L; d++)
cannam@19 393 {
cannam@19 394 mu[j][d] = 0;
cannam@19 395 for (t = 0; t < T; t++)
cannam@19 396 mu[j][d] += gamma[t][j] * x[t][d];
cannam@19 397 mu[j][d] /= sum_gamma[j];
cannam@19 398 }
cannam@19 399 }
cannam@19 400
cannam@19 401 /* deallocate memory */
cannam@19 402 free(sum_gamma);
cannam@19 403 free(yy);
cannam@19 404 free(yy2);
cannam@19 405 free(u);
cannam@19 406 }
cannam@19 407
cannam@19 408 void forward_backwards(double*** xi, double** gamma, double* loglik, double* loglik1, double* loglik2, int iter, int N, int T, double* p0, double** a, double** b)
cannam@19 409 {
cannam@19 410 /* forwards-backwards with scaling */
cannam@19 411 int i, j, t;
cannam@19 412
cannam@19 413 double** alpha = (double**) malloc(T*sizeof(double*));
cannam@19 414 double** beta = (double**) malloc(T*sizeof(double*));
cannam@19 415 for (t = 0; t < T; t++)
cannam@19 416 {
cannam@19 417 alpha[t] = (double*) malloc(N*sizeof(double));
cannam@19 418 beta[t] = (double*) malloc(N*sizeof(double));
cannam@19 419 }
cannam@19 420
cannam@19 421 /* scaling coefficients */
cannam@19 422 double* c = (double*) malloc(T*sizeof(double));
cannam@19 423
cannam@19 424 /* calculate forward probs and scale coefficients */
cannam@19 425 c[0] = 0;
cannam@19 426 for (i = 0; i < N; i++)
cannam@19 427 {
cannam@19 428 alpha[0][i] = p0[i] * b[0][i];
cannam@19 429 c[0] += alpha[0][i];
cannam@19 430
cannam@19 431 //printf("p0[%d] = %f, b[0][%d] = %f\n", i, p0[i], i, b[0][i]);
cannam@19 432 }
cannam@19 433 c[0] = 1 / c[0];
cannam@19 434 for (i = 0; i < N; i++)
cannam@19 435 {
cannam@19 436 alpha[0][i] *= c[0];
cannam@19 437
cannam@19 438 //printf("alpha[0][%d] = %f\n", i, alpha[0][i]); /* OK agrees with Matlab */
cannam@19 439 }
cannam@19 440
cannam@19 441 *loglik1 = *loglik;
cannam@19 442 *loglik = -log(c[0]);
cannam@19 443 if (iter == 2)
cannam@19 444 *loglik2 = *loglik;
cannam@19 445
cannam@19 446 for (t = 1; t < T; t++)
cannam@19 447 {
cannam@19 448 c[t] = 0;
cannam@19 449 for (j = 0; j < N; j++)
cannam@19 450 {
cannam@19 451 alpha[t][j] = 0;
cannam@19 452 for (i = 0; i < N; i++)
cannam@19 453 alpha[t][j] += alpha[t-1][i] * a[i][j];
cannam@19 454 alpha[t][j] *= b[t][j];
cannam@19 455
cannam@19 456 c[t] += alpha[t][j];
cannam@19 457 }
cannam@19 458
cannam@19 459 /*
cannam@19 460 if (c[t] == 0)
cannam@19 461 {
cannam@19 462 printf("c[%d] = 0, going to blow up so exiting\n", t);
cannam@19 463 for (i = 0; i < N; i++)
cannam@19 464 if (b[t][i] == 0)
cannam@19 465 fprintf(stderr, "b[%d][%d] was zero\n", t, i);
cannam@19 466 fprintf(stderr, "x[t] was \n");
cannam@19 467 for (i = 0; i < L; i++)
cannam@19 468 fprintf(stderr, "%f ", x[t][i]);
cannam@19 469 fprintf(stderr, "\n\n");
cannam@19 470 exit(-1);
cannam@19 471 }
cannam@19 472 */
cannam@19 473
cannam@19 474 c[t] = 1 / c[t];
cannam@19 475 for (j = 0; j < N; j++)
cannam@19 476 alpha[t][j] *= c[t];
cannam@19 477
cannam@19 478 //printf("c[%d] = %e\n", t, c[t]);
cannam@19 479
cannam@19 480 *loglik -= log(c[t]);
cannam@19 481 }
cannam@19 482
cannam@19 483 /* calculate backwards probs using same coefficients */
cannam@19 484 for (i = 0; i < N; i++)
cannam@19 485 beta[T-1][i] = 1;
cannam@19 486 t = T - 1;
cannam@19 487 while (1)
cannam@19 488 {
cannam@19 489 for (i = 0; i < N; i++)
cannam@19 490 beta[t][i] *= c[t];
cannam@19 491
cannam@19 492 if (t == 0)
cannam@19 493 break;
cannam@19 494
cannam@19 495 for (i = 0; i < N; i++)
cannam@19 496 {
cannam@19 497 beta[t-1][i] = 0;
cannam@19 498 for (j = 0; j < N; j++)
cannam@19 499 beta[t-1][i] += a[i][j] * b[t][j] * beta[t][j];
cannam@19 500 }
cannam@19 501
cannam@19 502 t--;
cannam@19 503 }
cannam@19 504
cannam@19 505 /*
cannam@19 506 printf("alpha:\n");
cannam@19 507 for (t = 0; t < T; t++)
cannam@19 508 {
cannam@19 509 for (i = 0; i < N; i++)
cannam@19 510 printf("%4.4e\t\t", alpha[t][i]);
cannam@19 511 printf("\n");
cannam@19 512 }
cannam@19 513 printf("\n\n");printf("beta:\n");
cannam@19 514 for (t = 0; t < T; t++)
cannam@19 515 {
cannam@19 516 for (i = 0; i < N; i++)
cannam@19 517 printf("%4.4e\t\t", beta[t][i]);
cannam@19 518 printf("\n");
cannam@19 519 }
cannam@19 520 printf("\n\n");
cannam@19 521 */
cannam@19 522
cannam@19 523 /* calculate posterior probs */
cannam@19 524 double tot;
cannam@19 525 for (t = 0; t < T; t++)
cannam@19 526 {
cannam@19 527 tot = 0;
cannam@19 528 for (i = 0; i < N; i++)
cannam@19 529 {
cannam@19 530 gamma[t][i] = alpha[t][i] * beta[t][i];
cannam@19 531 tot += gamma[t][i];
cannam@19 532 }
cannam@19 533 for (i = 0; i < N; i++)
cannam@19 534 {
cannam@19 535 gamma[t][i] /= tot;
cannam@19 536
cannam@19 537 //printf("gamma[%d][%d] = %f\n", t, i, gamma[t][i]);
cannam@19 538 }
cannam@19 539 }
cannam@19 540
cannam@19 541 for (t = 0; t < T-1; t++)
cannam@19 542 {
cannam@19 543 tot = 0;
cannam@19 544 for (i = 0; i < N; i++)
cannam@19 545 {
cannam@19 546 for (j = 0; j < N; j++)
cannam@19 547 {
cannam@19 548 xi[t][i][j] = alpha[t][i] * a[i][j] * b[t+1][j] * beta[t+1][j];
cannam@19 549 tot += xi[t][i][j];
cannam@19 550 }
cannam@19 551 }
cannam@19 552 for (i = 0; i < N; i++)
cannam@19 553 for (j = 0; j < N; j++)
cannam@19 554 xi[t][i][j] /= tot;
cannam@19 555 }
cannam@19 556
cannam@19 557 /*
cannam@19 558 // CHECK - fine
cannam@19 559 // gamma[t][i] = \sum_j{xi[t][i][j]}
cannam@19 560 tot = 0;
cannam@19 561 for (j = 0; j < N; j++)
cannam@19 562 tot += xi[3][1][j];
cannam@19 563 printf("gamma[3][1] = %f, sum_j(xi[3][1][j]) = %f\n", gamma[3][1], tot);
cannam@19 564 */
cannam@19 565
cannam@19 566 for (t = 0; t < T; t++)
cannam@19 567 {
cannam@19 568 free(alpha[t]);
cannam@19 569 free(beta[t]);
cannam@19 570 }
cannam@19 571 free(alpha);
cannam@19 572 free(beta);
cannam@19 573 free(c);
cannam@19 574 }
cannam@19 575
cannam@19 576 void viterbi_decode(double** x, int T, model_t* model, int* q)
cannam@19 577 {
cannam@19 578 int i, j, t;
cannam@19 579 double max;
cannam@48 580 int havemax;
cannam@19 581
cannam@19 582 int N = model->N;
cannam@19 583 int L = model->L;
cannam@19 584 double* p0 = model->p0;
cannam@19 585 double** a = model->a;
cannam@19 586 double** mu = model->mu;
cannam@19 587 double** cov = model->cov;
cannam@19 588
cannam@19 589 /* inverse covariance and its determinant */
cannam@19 590 double** icov = (double**) malloc(L*sizeof(double*));
cannam@19 591 for (i = 0; i < L; i++)
cannam@19 592 icov[i] = (double*) malloc(L*sizeof(double));
cannam@19 593 double detcov;
cannam@19 594
cannam@19 595 double** logb = (double**) malloc(T*sizeof(double*));
cannam@19 596 double** phi = (double**) malloc(T*sizeof(double*));
cannam@19 597 int** psi = (int**) malloc(T*sizeof(int*));
cannam@19 598 for (t = 0; t < T; t++)
cannam@19 599 {
cannam@19 600 logb[t] = (double*) malloc(N*sizeof(double));
cannam@19 601 phi[t] = (double*) malloc(N*sizeof(double));
cannam@19 602 psi[t] = (int*) malloc(N*sizeof(int));
cannam@19 603 }
cannam@19 604
cannam@19 605 /* temporary memory */
cannam@19 606 double* gauss_y = (double*) malloc(L*sizeof(double));
cannam@19 607 double* gauss_z = (double*) malloc(L*sizeof(double));
cannam@19 608
cannam@19 609 /* calculate observation logprobs */
cannam@19 610 invert(cov, L, icov, &detcov);
cannam@19 611 for (t = 0; t < T; t++)
cannam@19 612 for (i = 0; i < N; i++)
cannam@19 613 logb[t][i] = loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z);
cannam@19 614
cannam@19 615 /* initialise */
cannam@19 616 for (i = 0; i < N; i++)
cannam@19 617 {
cannam@19 618 phi[0][i] = log(p0[i]) + logb[0][i];
cannam@19 619 psi[0][i] = 0;
cannam@19 620 }
cannam@19 621
cannam@19 622 for (t = 1; t < T; t++)
cannam@19 623 {
cannam@19 624 for (j = 0; j < N; j++)
cannam@19 625 {
cannam@48 626 max = -1000000;
cannam@48 627 havemax = 0;
cannam@48 628
cannam@19 629 psi[t][j] = 0;
cannam@19 630 for (i = 0; i < N; i++)
cannam@19 631 {
cannam@48 632 if (phi[t-1][i] + log(a[i][j]) > max || !havemax)
cannam@19 633 {
cannam@19 634 max = phi[t-1][i] + log(a[i][j]);
cannam@19 635 phi[t][j] = max + logb[t][j];
cannam@19 636 psi[t][j] = i;
cannam@48 637 havemax = 1;
cannam@19 638 }
cannam@19 639 }
cannam@19 640 }
cannam@19 641 }
cannam@19 642
cannam@19 643 /* find maximising state at time T-1 */
cannam@19 644 max = phi[T-1][0];
cannam@19 645 q[T-1] = 0;
cannam@19 646 for (i = 1; i < N; i++)
cannam@19 647 {
cannam@19 648 if (phi[T-1][i] > max)
cannam@19 649 {
cannam@19 650 max = phi[T-1][i];
cannam@19 651 q[T-1] = i;
cannam@19 652 }
cannam@19 653 }
cannam@19 654
cannam@19 655
cannam@19 656 /* track back */
cannam@19 657 t = T - 2;
cannam@19 658 while (t >= 0)
cannam@19 659 {
cannam@19 660 q[t] = psi[t+1][q[t+1]];
cannam@19 661 t--;
cannam@19 662 }
cannam@19 663
cannam@19 664 /* de-allocate memory */
cannam@19 665 for (i = 0; i < L; i++)
cannam@19 666 free(icov[i]);
cannam@19 667 free(icov);
cannam@19 668 for (t = 0; t < T; t++)
cannam@19 669 {
cannam@19 670 free(logb[t]);
cannam@19 671 free(phi[t]);
cannam@19 672 free(psi[t]);
cannam@19 673 }
cannam@19 674 free(logb);
cannam@19 675 free(phi);
cannam@19 676 free(psi);
cannam@19 677
cannam@19 678 free(gauss_y);
cannam@19 679 free(gauss_z);
cannam@19 680 }
cannam@19 681
cannam@19 682 /* invert matrix and calculate determinant using LAPACK */
cannam@19 683 void invert(double** cov, int L, double** icov, double* detcov)
cannam@19 684 {
cannam@19 685 /* copy square matrix into a vector in column-major order */
cannam@19 686 double* a = (double*) malloc(L*L*sizeof(double));
cannam@19 687 int i, j;
cannam@19 688 for(j=0; j < L; j++)
cannam@19 689 for (i=0; i < L; i++)
cannam@19 690 a[j*L+i] = cov[i][j];
cannam@19 691
cannam@44 692 int M = (int) L;
cannam@44 693 int* ipiv = (int *) malloc(L*L*sizeof(int));
cannam@44 694 int ret;
cannam@19 695
cannam@19 696 /* LU decomposition */
cannam@19 697 ret = dgetrf_(&M, &M, a, &M, ipiv, &ret); /* ret should be zero, negative if cov is singular */
cannam@19 698 if (ret < 0)
cannam@19 699 {
cannam@19 700 fprintf(stderr, "Covariance matrix was singular, couldn't invert\n");
cannam@19 701 exit(-1);
cannam@19 702 }
cannam@19 703
cannam@19 704 /* find determinant */
cannam@19 705 double det = 1;
cannam@19 706 for(i = 0; i < L; i++)
cannam@19 707 det *= a[i*L+i];
cannam@19 708 // TODO: get this to work!!! If detcov < 0 then cov is bad anyway...
cannam@19 709 /*
cannam@19 710 int sign = 1;
cannam@19 711 for (i = 0; i < L; i++)
cannam@19 712 if (ipiv[i] != i)
cannam@19 713 sign = -sign;
cannam@19 714 det *= sign;
cannam@19 715 */
cannam@19 716 if (det < 0)
cannam@19 717 det = -det;
cannam@19 718 *detcov = det;
cannam@19 719
cannam@19 720 /* allocate required working storage */
cannam@44 721 #ifndef HAVE_ATLAS
cannam@44 722 int lwork = -1;
cannam@44 723 double lwbest = 0.0;
cannam@19 724 dgetri_(&M, a, &M, ipiv, &lwbest, &lwork, &ret);
cannam@44 725 lwork = (int) lwbest;
cannam@19 726 double* work = (double*) malloc(lwork*sizeof(double));
cannam@44 727 #endif
cannam@19 728
cannam@19 729 /* find inverse */
cannam@19 730 dgetri_(&M, a, &M, ipiv, work, &lwork, &ret);
cannam@44 731
cannam@19 732 for(j=0; j < L; j++)
cannam@19 733 for (i=0; i < L; i++)
cannam@19 734 icov[i][j] = a[j*L+i];
cannam@19 735
cannam@44 736 #ifndef HAVE_ATLAS
cannam@19 737 free(work);
cannam@44 738 #endif
cannam@19 739 free(a);
cannam@19 740 }
cannam@19 741
cannam@19 742 /* probability of multivariate Gaussian given mean, inverse and determinant of covariance */
cannam@19 743 double gauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
cannam@19 744 {
cannam@19 745 int i, j;
cannam@19 746 double s = 0;
cannam@19 747 for (i = 0; i < L; i++)
cannam@19 748 y[i] = x[i] - mu[i];
cannam@19 749 for (i = 0; i < L; i++)
cannam@19 750 {
cannam@19 751 //z[i] = 0;
cannam@19 752 //for (j = 0; j < L; j++)
cannam@19 753 // z[i] += icov[i][j] * y[j];
cannam@19 754 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
cannam@19 755 }
cannam@19 756 s = cblas_ddot(L, z, 1, y, 1);
cannam@19 757 //for (i = 0; i < L; i++)
cannam@19 758 // s += z[i] * y[i];
cannam@19 759
cannam@19 760 return exp(-s/2.0) / (pow(2*PI, L/2.0) * sqrt(detcov));
cannam@19 761 }
cannam@19 762
cannam@19 763 /* log probability of multivariate Gaussian given mean, inverse and determinant of covariance */
cannam@19 764 double loggauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
cannam@19 765 {
cannam@19 766 int i, j;
cannam@19 767 double s = 0;
cannam@19 768 double ret;
cannam@19 769 for (i = 0; i < L; i++)
cannam@19 770 y[i] = x[i] - mu[i];
cannam@19 771 for (i = 0; i < L; i++)
cannam@19 772 {
cannam@19 773 //z[i] = 0;
cannam@19 774 //for (j = 0; j < L; j++)
cannam@19 775 // z[i] += icov[i][j] * y[j];
cannam@19 776 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
cannam@19 777 }
cannam@19 778 s = cblas_ddot(L, z, 1, y, 1);
cannam@19 779 //for (i = 0; i < L; i++)
cannam@19 780 // s += z[i] * y[i];
cannam@19 781
cannam@19 782 ret = -0.5 * (s + L * log(2*PI) + log(detcov));
cannam@19 783
cannam@19 784 /*
cannam@19 785 // TEST
cannam@19 786 if (isinf(ret) > 0)
cannam@19 787 printf("loggauss returning infinity\n");
cannam@19 788 if (isinf(ret) < 0)
cannam@19 789 printf("loggauss returning -infinity\n");
cannam@19 790 if (isnan(ret))
cannam@19 791 printf("loggauss returning nan\n");
cannam@19 792 */
cannam@19 793
cannam@19 794 return ret;
cannam@19 795 }
cannam@19 796
cannam@19 797 void hmm_print(model_t* model)
cannam@19 798 {
cannam@19 799 int i, j;
cannam@19 800 printf("p0:\n");
cannam@19 801 for (i = 0; i < model->N; i++)
cannam@19 802 printf("%f ", model->p0[i]);
cannam@19 803 printf("\n\n");
cannam@19 804 printf("a:\n");
cannam@19 805 for (i = 0; i < model->N; i++)
cannam@19 806 {
cannam@19 807 for (j = 0; j < model->N; j++)
cannam@19 808 printf("%f ", model->a[i][j]);
cannam@19 809 printf("\n");
cannam@19 810 }
cannam@19 811 printf("\n\n");
cannam@19 812 printf("mu:\n");
cannam@19 813 for (i = 0; i < model->N; i++)
cannam@19 814 {
cannam@19 815 for (j = 0; j < model->L; j++)
cannam@19 816 printf("%f ", model->mu[i][j]);
cannam@19 817 printf("\n");
cannam@19 818 }
cannam@19 819 printf("\n\n");
cannam@19 820 printf("cov:\n");
cannam@19 821 for (i = 0; i < model->L; i++)
cannam@19 822 {
cannam@19 823 for (j = 0; j < model->L; j++)
cannam@19 824 printf("%f ", model->cov[i][j]);
cannam@19 825 printf("\n");
cannam@19 826 }
cannam@19 827 printf("\n\n");
cannam@19 828 }
cannam@19 829
cannam@19 830