annotate hmm/hmm.c @ 79:054c384d860d

* Solaris build fixes
author cannam
date Mon, 14 Sep 2009 13:01:44 +0000
parents d72fcd34d9a7
children 67899fda84f5
rev   line source
cannam@19 1 /*
cannam@19 2 * hmm.c
cannam@19 3 * soundbite
cannam@19 4 *
cannam@19 5 * Created by Mark Levy on 12/02/2006.
cannam@19 6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved.
cannam@19 7 *
cannam@19 8 */
cannam@19 9
cannam@19 10 #include <stdio.h>
cannam@19 11 #include <math.h>
cannam@19 12 #include <stdlib.h>
cannam@19 13 #include <float.h>
cannam@19 14 #include <time.h> /* to seed random number generator */
cannam@44 15
cannam@19 16 #include <clapack.h> /* LAPACK for matrix inversion */
cannam@44 17
cannam@79 18 #include "maths/nan-inf.h"
cannam@79 19
cannam@44 20 #ifdef ATLAS_ORDER
cannam@44 21 #define HAVE_ATLAS 1
cannam@44 22 #endif
cannam@44 23
cannam@44 24 #ifdef HAVE_ATLAS
cannam@44 25 // Using ATLAS C interface to LAPACK
cannam@44 26 #define dgetrf_(m, n, a, lda, ipiv, info) \
cannam@44 27 clapack_dgetrf(CblasColMajor, *m, *n, a, *lda, ipiv)
cannam@44 28 #define dgetri_(n, a, lda, ipiv, work, lwork, info) \
cannam@44 29 clapack_dgetri(CblasColMajor, *n, a, *lda, ipiv)
cannam@44 30 #endif
cannam@44 31
cannam@19 32 #ifdef _MAC_OS_X
cannam@19 33 #include <vecLib/cblas.h>
cannam@19 34 #else
cannam@19 35 #include <cblas.h> /* BLAS for matrix multiplication */
cannam@19 36 #endif
cannam@19 37
cannam@19 38 #include "hmm.h"
cannam@19 39
cannam@19 40 model_t* hmm_init(double** x, int T, int L, int N)
cannam@19 41 {
cannam@19 42 int i, j, d, e, t;
cannam@19 43 double s, ss;
cannam@19 44
cannam@19 45 model_t* model;
cannam@19 46 model = (model_t*) malloc(sizeof(model_t));
cannam@19 47 model->N = N;
cannam@19 48 model->L = L;
cannam@19 49 model->p0 = (double*) malloc(N*sizeof(double));
cannam@19 50 model->a = (double**) malloc(N*sizeof(double*));
cannam@19 51 model->mu = (double**) malloc(N*sizeof(double*));
cannam@19 52 for (i = 0; i < N; i++)
cannam@19 53 {
cannam@19 54 model->a[i] = (double*) malloc(N*sizeof(double));
cannam@19 55 model->mu[i] = (double*) malloc(L*sizeof(double));
cannam@19 56 }
cannam@19 57 model->cov = (double**) malloc(L*sizeof(double*));
cannam@19 58 for (i = 0; i < L; i++)
cannam@19 59 model->cov[i] = (double*) malloc(L*sizeof(double));
cannam@19 60
cannam@19 61 srand(time(0));
cannam@19 62 double* global_mean = (double*) malloc(L*sizeof(double));
cannam@19 63
cannam@19 64 /* find global mean */
cannam@19 65 for (d = 0; d < L; d++)
cannam@19 66 {
cannam@19 67 global_mean[d] = 0;
cannam@19 68 for (t = 0; t < T; t++)
cannam@19 69 global_mean[d] += x[t][d];
cannam@19 70 global_mean[d] /= T;
cannam@19 71 }
cannam@19 72
cannam@19 73 /* calculate global diagonal covariance */
cannam@19 74 for (d = 0; d < L; d++)
cannam@19 75 {
cannam@19 76 for (e = 0; e < L; e++)
cannam@19 77 model->cov[d][e] = 0;
cannam@19 78 for (t = 0; t < T; t++)
cannam@19 79 model->cov[d][d] += (x[t][d] - global_mean[d]) * (x[t][d] - global_mean[d]);
cannam@19 80 model->cov[d][d] /= T-1;
cannam@19 81 }
cannam@19 82
cannam@19 83 /* set all means close to global mean */
cannam@19 84 for (i = 0; i < N; i++)
cannam@19 85 {
cannam@19 86 for (d = 0; d < L; d++)
cannam@19 87 {
cannam@19 88 /* add some random noise related to covariance */
cannam@19 89 /* ideally the random number would be Gaussian(0,1), as a hack we make it uniform on [-0.25,0.25] */
cannam@19 90 model->mu[i][d] = global_mean[d] + (0.5 * rand() / (double) RAND_MAX - 0.25) * sqrt(model->cov[d][d]);
cannam@19 91 }
cannam@19 92 }
cannam@19 93
cannam@19 94 /* random intial and transition probs */
cannam@19 95 s = 0;
cannam@19 96 for (i = 0; i < N; i++)
cannam@19 97 {
cannam@19 98 model->p0[i] = 1 + rand() / (double) RAND_MAX;
cannam@19 99 s += model->p0[i];
cannam@19 100 ss = 0;
cannam@19 101 for (j = 0; j < N; j++)
cannam@19 102 {
cannam@19 103 model->a[i][j] = 1 + rand() / (double) RAND_MAX;
cannam@19 104 ss += model->a[i][j];
cannam@19 105 }
cannam@19 106 for (j = 0; j < N; j++)
cannam@19 107 {
cannam@19 108 model->a[i][j] /= ss;
cannam@19 109 }
cannam@19 110 }
cannam@19 111 for (i = 0; i < N; i++)
cannam@19 112 model->p0[i] /= s;
cannam@19 113
cannam@19 114 free(global_mean);
cannam@19 115
cannam@19 116 return model;
cannam@19 117 }
cannam@19 118
cannam@19 119 void hmm_close(model_t* model)
cannam@19 120 {
cannam@19 121 int i;
cannam@19 122
cannam@19 123 for (i = 0; i < model->N; i++)
cannam@19 124 {
cannam@19 125 free(model->a[i]);
cannam@19 126 free(model->mu[i]);
cannam@19 127 }
cannam@19 128 free(model->a);
cannam@19 129 free(model->mu);
cannam@19 130 for (i = 0; i < model->L; i++)
cannam@19 131 free(model->cov[i]);
cannam@19 132 free(model->cov);
cannam@19 133 free(model);
cannam@19 134 }
cannam@19 135
cannam@19 136 void hmm_train(double** x, int T, model_t* model)
cannam@19 137 {
cannam@19 138 int i, t;
cannam@19 139 double loglik; /* overall log-likelihood at each iteration */
cannam@19 140
cannam@19 141 int N = model->N;
cannam@19 142 int L = model->L;
cannam@19 143 double* p0 = model->p0;
cannam@19 144 double** a = model->a;
cannam@19 145 double** mu = model->mu;
cannam@19 146 double** cov = model->cov;
cannam@19 147
cannam@19 148 /* allocate memory */
cannam@19 149 double** gamma = (double**) malloc(T*sizeof(double*));
cannam@19 150 double*** xi = (double***) malloc(T*sizeof(double**));
cannam@19 151 for (t = 0; t < T; t++)
cannam@19 152 {
cannam@19 153 gamma[t] = (double*) malloc(N*sizeof(double));
cannam@19 154 xi[t] = (double**) malloc(N*sizeof(double*));
cannam@19 155 for (i = 0; i < N; i++)
cannam@19 156 xi[t][i] = (double*) malloc(N*sizeof(double));
cannam@19 157 }
cannam@19 158
cannam@19 159 /* temporary memory */
cannam@19 160 double* gauss_y = (double*) malloc(L*sizeof(double));
cannam@19 161 double* gauss_z = (double*) malloc(L*sizeof(double));
cannam@19 162
cannam@19 163 /* obs probs P(j|{x}) */
cannam@19 164 double** b = (double**) malloc(T*sizeof(double*));
cannam@19 165 for (t = 0; t < T; t++)
cannam@19 166 b[t] = (double*) malloc(N*sizeof(double));
cannam@19 167
cannam@19 168 /* inverse covariance and its determinant */
cannam@19 169 double** icov = (double**) malloc(L*sizeof(double*));
cannam@19 170 for (i = 0; i < L; i++)
cannam@19 171 icov[i] = (double*) malloc(L*sizeof(double));
cannam@19 172 double detcov;
cannam@19 173
cannam@19 174 double thresh = 0.0001;
cannam@19 175 int niter = 50;
cannam@19 176 int iter = 0;
cannam@19 177 double loglik1, loglik2;
cannam@30 178 int foundnan = 0;
cannam@30 179
cannam@30 180 while (iter < niter && !foundnan && !(iter > 1 && (loglik - loglik1) < thresh * (loglik1 - loglik2)))
cannam@19 181 {
cannam@19 182 ++iter;
cannam@58 183 /*
cannam@19 184 fprintf(stderr, "calculating obsprobs...\n");
cannam@19 185 fflush(stderr);
cannam@58 186 */
cannam@19 187 /* precalculate obs probs */
cannam@19 188 invert(cov, L, icov, &detcov);
cannam@19 189
cannam@19 190 for (t = 0; t < T; t++)
cannam@19 191 {
cannam@19 192 //int allzero = 1;
cannam@19 193 for (i = 0; i < N; i++)
cannam@19 194 {
cannam@19 195 b[t][i] = exp(loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z));
cannam@19 196
cannam@19 197 //if (b[t][i] != 0)
cannam@19 198 // allzero = 0;
cannam@19 199 }
cannam@19 200 /*
cannam@19 201 if (allzero)
cannam@19 202 {
cannam@19 203 printf("all the b[t][i] were zero for t = %d, correcting...\n", t);
cannam@19 204 for (i = 0; i < N; i++)
cannam@19 205 {
cannam@19 206 b[t][i] = 0.00001;
cannam@19 207 }
cannam@19 208 }
cannam@19 209 */
cannam@19 210 }
cannam@58 211 /*
cannam@19 212 fprintf(stderr, "forwards-backwards...\n");
cannam@19 213 fflush(stderr);
cannam@58 214 */
cannam@19 215 forward_backwards(xi, gamma, &loglik, &loglik1, &loglik2, iter, N, T, p0, a, b);
cannam@58 216 /*
cannam@19 217 fprintf(stderr, "iteration %d: loglik = %f\n", iter, loglik);
cannam@19 218 fprintf(stderr, "re-estimation...\n");
cannam@19 219 fflush(stderr);
cannam@58 220 */
cannam@79 221 if (ISNAN(loglik)) {
cannam@30 222 foundnan = 1;
cannam@30 223 continue;
cannam@30 224 }
cannam@19 225
cannam@19 226 baum_welch(p0, a, mu, cov, N, T, L, x, xi, gamma);
cannam@19 227
cannam@19 228 /*
cannam@19 229 printf("a:\n");
cannam@19 230 for (i = 0; i < model->N; i++)
cannam@19 231 {
cannam@19 232 for (j = 0; j < model->N; j++)
cannam@19 233 printf("%f ", model->a[i][j]);
cannam@19 234 printf("\n");
cannam@19 235 }
cannam@19 236 printf("\n\n");
cannam@19 237 */
cannam@19 238 //hmm_print(model);
cannam@19 239 }
cannam@19 240
cannam@19 241 /* deallocate memory */
cannam@19 242 for (t = 0; t < T; t++)
cannam@19 243 {
cannam@19 244 free(gamma[t]);
cannam@19 245 free(b[t]);
cannam@19 246 for (i = 0; i < N; i++)
cannam@19 247 free(xi[t][i]);
cannam@19 248 free(xi[t]);
cannam@19 249 }
cannam@19 250 free(gamma);
cannam@19 251 free(xi);
cannam@19 252 free(b);
cannam@19 253
cannam@19 254 for (i = 0; i < L; i++)
cannam@19 255 free(icov[i]);
cannam@19 256 free(icov);
cannam@19 257
cannam@19 258 free(gauss_y);
cannam@19 259 free(gauss_z);
cannam@19 260 }
cannam@19 261
cannam@19 262 void mlss_reestimate(double* p0, double** a, double** mu, double** cov, int N, int T, int L, int* q, double** x)
cannam@19 263 {
cannam@19 264 /* fit a single Gaussian to observations in each state */
cannam@19 265
cannam@19 266 /* calculate the mean observation in each state */
cannam@19 267
cannam@19 268 /* calculate the overall covariance */
cannam@19 269
cannam@19 270 /* count transitions */
cannam@19 271
cannam@19 272 /* estimate initial probs from transitions (???) */
cannam@19 273 }
cannam@19 274
cannam@19 275 void baum_welch(double* p0, double** a, double** mu, double** cov, int N, int T, int L, double** x, double*** xi, double** gamma)
cannam@19 276 {
cannam@19 277 int i, j, t;
cannam@19 278
cannam@19 279 double* sum_gamma = (double*) malloc(N*sizeof(double));
cannam@19 280
cannam@19 281 /* temporary memory */
cannam@19 282 double* u = (double*) malloc(L*L*sizeof(double));
cannam@19 283 double* yy = (double*) malloc(T*L*sizeof(double));
cannam@19 284 double* yy2 = (double*) malloc(T*L*sizeof(double));
cannam@19 285
cannam@19 286 /* re-estimate transition probs */
cannam@19 287 for (i = 0; i < N; i++)
cannam@19 288 {
cannam@19 289 sum_gamma[i] = 0;
cannam@19 290 for (t = 0; t < T-1; t++)
cannam@19 291 sum_gamma[i] += gamma[t][i];
cannam@19 292 }
cannam@19 293
cannam@19 294 for (i = 0; i < N; i++)
cannam@19 295 {
cannam@19 296 if (sum_gamma[i] == 0)
cannam@19 297 {
cannam@58 298 /* fprintf(stderr, "sum_gamma[%d] was zero...\n", i); */
cannam@19 299 }
cannam@19 300 //double s = 0;
cannam@19 301 for (j = 0; j < N; j++)
cannam@19 302 {
cannam@19 303 a[i][j] = 0;
cannam@30 304 if (sum_gamma[i] == 0.) continue;
cannam@19 305 for (t = 0; t < T-1; t++)
cannam@19 306 a[i][j] += xi[t][i][j];
cannam@19 307 //s += a[i][j];
cannam@19 308 a[i][j] /= sum_gamma[i];
cannam@19 309 }
cannam@19 310 /*
cannam@19 311 for (j = 0; j < N; j++)
cannam@19 312 {
cannam@19 313 a[i][j] /= s;
cannam@19 314 }
cannam@19 315 */
cannam@19 316 }
cannam@19 317
cannam@19 318 /* NB: now we need to sum gamma over all t */
cannam@19 319 for (i = 0; i < N; i++)
cannam@19 320 sum_gamma[i] += gamma[T-1][i];
cannam@19 321
cannam@19 322 /* re-estimate initial probs */
cannam@19 323 for (i = 0; i < N; i++)
cannam@19 324 p0[i] = gamma[0][i];
cannam@19 325
cannam@19 326 /* re-estimate covariance */
cannam@19 327 int d, e;
cannam@19 328 double sum_sum_gamma = 0;
cannam@19 329 for (i = 0; i < N; i++)
cannam@19 330 sum_sum_gamma += sum_gamma[i];
cannam@19 331
cannam@19 332 /*
cannam@19 333 for (d = 0; d < L; d++)
cannam@19 334 {
cannam@19 335 for (e = d; e < L; e++)
cannam@19 336 {
cannam@19 337 cov[d][e] = 0;
cannam@19 338 for (t = 0; t < T; t++)
cannam@19 339 for (j = 0; j < N; j++)
cannam@19 340 cov[d][e] += gamma[t][j] * (x[t][d] - mu[j][d]) * (x[t][e] - mu[j][e]);
cannam@19 341
cannam@19 342 cov[d][e] /= sum_sum_gamma;
cannam@19 343
cannam@79 344 if (ISNAN(cov[d][e]))
cannam@19 345 {
cannam@19 346 printf("cov[%d][%d] was nan\n", d, e);
cannam@19 347 for (j = 0; j < N; j++)
cannam@19 348 for (i = 0; i < L; i++)
cannam@79 349 if (ISNAN(mu[j][i]))
cannam@19 350 printf("mu[%d][%d] was nan\n", j, i);
cannam@19 351 for (t = 0; t < T; t++)
cannam@19 352 for (j = 0; j < N; j++)
cannam@79 353 if (ISNAN(gamma[t][j]))
cannam@19 354 printf("gamma[%d][%d] was nan\n", t, j);
cannam@19 355 exit(-1);
cannam@19 356 }
cannam@19 357 }
cannam@19 358 }
cannam@19 359 for (d = 0; d < L; d++)
cannam@19 360 for (e = 0; e < d; e++)
cannam@19 361 cov[d][e] = cov[e][d];
cannam@19 362 */
cannam@19 363
cannam@19 364 /* using BLAS */
cannam@19 365 for (d = 0; d < L; d++)
cannam@19 366 for (e = 0; e < L; e++)
cannam@19 367 cov[d][e] = 0;
cannam@19 368
cannam@19 369 for (j = 0; j < N; j++)
cannam@19 370 {
cannam@19 371 for (d = 0; d < L; d++)
cannam@19 372 for (t = 0; t < T; t++)
cannam@19 373 {
cannam@19 374 yy[d*T+t] = x[t][d] - mu[j][d];
cannam@19 375 yy2[d*T+t] = gamma[t][j] * (x[t][d] - mu[j][d]);
cannam@19 376 }
cannam@19 377
cannam@19 378 cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, L, L, T, 1.0, yy, T, yy2, T, 0, u, L);
cannam@19 379
cannam@19 380 for (e = 0; e < L; e++)
cannam@19 381 for (d = 0; d < L; d++)
cannam@19 382 cov[d][e] += u[e*L+d];
cannam@19 383 }
cannam@19 384
cannam@19 385 for (d = 0; d < L; d++)
cannam@19 386 for (e = 0; e < L; e++)
cannam@19 387 cov[d][e] /= T; /* sum_sum_gamma; */
cannam@19 388
cannam@19 389 //printf("sum_sum_gamma = %f\n", sum_sum_gamma); /* fine, = T IS THIS ALWAYS TRUE with pooled cov?? */
cannam@19 390
cannam@19 391 /* re-estimate means */
cannam@19 392 for (j = 0; j < N; j++)
cannam@19 393 {
cannam@19 394 for (d = 0; d < L; d++)
cannam@19 395 {
cannam@19 396 mu[j][d] = 0;
cannam@19 397 for (t = 0; t < T; t++)
cannam@19 398 mu[j][d] += gamma[t][j] * x[t][d];
cannam@19 399 mu[j][d] /= sum_gamma[j];
cannam@19 400 }
cannam@19 401 }
cannam@19 402
cannam@19 403 /* deallocate memory */
cannam@19 404 free(sum_gamma);
cannam@19 405 free(yy);
cannam@19 406 free(yy2);
cannam@19 407 free(u);
cannam@19 408 }
cannam@19 409
cannam@19 410 void forward_backwards(double*** xi, double** gamma, double* loglik, double* loglik1, double* loglik2, int iter, int N, int T, double* p0, double** a, double** b)
cannam@19 411 {
cannam@19 412 /* forwards-backwards with scaling */
cannam@19 413 int i, j, t;
cannam@19 414
cannam@19 415 double** alpha = (double**) malloc(T*sizeof(double*));
cannam@19 416 double** beta = (double**) malloc(T*sizeof(double*));
cannam@19 417 for (t = 0; t < T; t++)
cannam@19 418 {
cannam@19 419 alpha[t] = (double*) malloc(N*sizeof(double));
cannam@19 420 beta[t] = (double*) malloc(N*sizeof(double));
cannam@19 421 }
cannam@19 422
cannam@19 423 /* scaling coefficients */
cannam@19 424 double* c = (double*) malloc(T*sizeof(double));
cannam@19 425
cannam@19 426 /* calculate forward probs and scale coefficients */
cannam@19 427 c[0] = 0;
cannam@19 428 for (i = 0; i < N; i++)
cannam@19 429 {
cannam@19 430 alpha[0][i] = p0[i] * b[0][i];
cannam@19 431 c[0] += alpha[0][i];
cannam@19 432
cannam@19 433 //printf("p0[%d] = %f, b[0][%d] = %f\n", i, p0[i], i, b[0][i]);
cannam@19 434 }
cannam@19 435 c[0] = 1 / c[0];
cannam@19 436 for (i = 0; i < N; i++)
cannam@19 437 {
cannam@19 438 alpha[0][i] *= c[0];
cannam@19 439
cannam@19 440 //printf("alpha[0][%d] = %f\n", i, alpha[0][i]); /* OK agrees with Matlab */
cannam@19 441 }
cannam@19 442
cannam@19 443 *loglik1 = *loglik;
cannam@19 444 *loglik = -log(c[0]);
cannam@19 445 if (iter == 2)
cannam@19 446 *loglik2 = *loglik;
cannam@19 447
cannam@19 448 for (t = 1; t < T; t++)
cannam@19 449 {
cannam@19 450 c[t] = 0;
cannam@19 451 for (j = 0; j < N; j++)
cannam@19 452 {
cannam@19 453 alpha[t][j] = 0;
cannam@19 454 for (i = 0; i < N; i++)
cannam@19 455 alpha[t][j] += alpha[t-1][i] * a[i][j];
cannam@19 456 alpha[t][j] *= b[t][j];
cannam@19 457
cannam@19 458 c[t] += alpha[t][j];
cannam@19 459 }
cannam@19 460
cannam@19 461 /*
cannam@19 462 if (c[t] == 0)
cannam@19 463 {
cannam@19 464 printf("c[%d] = 0, going to blow up so exiting\n", t);
cannam@19 465 for (i = 0; i < N; i++)
cannam@19 466 if (b[t][i] == 0)
cannam@19 467 fprintf(stderr, "b[%d][%d] was zero\n", t, i);
cannam@19 468 fprintf(stderr, "x[t] was \n");
cannam@19 469 for (i = 0; i < L; i++)
cannam@19 470 fprintf(stderr, "%f ", x[t][i]);
cannam@19 471 fprintf(stderr, "\n\n");
cannam@19 472 exit(-1);
cannam@19 473 }
cannam@19 474 */
cannam@19 475
cannam@19 476 c[t] = 1 / c[t];
cannam@19 477 for (j = 0; j < N; j++)
cannam@19 478 alpha[t][j] *= c[t];
cannam@19 479
cannam@19 480 //printf("c[%d] = %e\n", t, c[t]);
cannam@19 481
cannam@19 482 *loglik -= log(c[t]);
cannam@19 483 }
cannam@19 484
cannam@19 485 /* calculate backwards probs using same coefficients */
cannam@19 486 for (i = 0; i < N; i++)
cannam@19 487 beta[T-1][i] = 1;
cannam@19 488 t = T - 1;
cannam@19 489 while (1)
cannam@19 490 {
cannam@19 491 for (i = 0; i < N; i++)
cannam@19 492 beta[t][i] *= c[t];
cannam@19 493
cannam@19 494 if (t == 0)
cannam@19 495 break;
cannam@19 496
cannam@19 497 for (i = 0; i < N; i++)
cannam@19 498 {
cannam@19 499 beta[t-1][i] = 0;
cannam@19 500 for (j = 0; j < N; j++)
cannam@19 501 beta[t-1][i] += a[i][j] * b[t][j] * beta[t][j];
cannam@19 502 }
cannam@19 503
cannam@19 504 t--;
cannam@19 505 }
cannam@19 506
cannam@19 507 /*
cannam@19 508 printf("alpha:\n");
cannam@19 509 for (t = 0; t < T; t++)
cannam@19 510 {
cannam@19 511 for (i = 0; i < N; i++)
cannam@19 512 printf("%4.4e\t\t", alpha[t][i]);
cannam@19 513 printf("\n");
cannam@19 514 }
cannam@19 515 printf("\n\n");printf("beta:\n");
cannam@19 516 for (t = 0; t < T; t++)
cannam@19 517 {
cannam@19 518 for (i = 0; i < N; i++)
cannam@19 519 printf("%4.4e\t\t", beta[t][i]);
cannam@19 520 printf("\n");
cannam@19 521 }
cannam@19 522 printf("\n\n");
cannam@19 523 */
cannam@19 524
cannam@19 525 /* calculate posterior probs */
cannam@19 526 double tot;
cannam@19 527 for (t = 0; t < T; t++)
cannam@19 528 {
cannam@19 529 tot = 0;
cannam@19 530 for (i = 0; i < N; i++)
cannam@19 531 {
cannam@19 532 gamma[t][i] = alpha[t][i] * beta[t][i];
cannam@19 533 tot += gamma[t][i];
cannam@19 534 }
cannam@19 535 for (i = 0; i < N; i++)
cannam@19 536 {
cannam@19 537 gamma[t][i] /= tot;
cannam@19 538
cannam@19 539 //printf("gamma[%d][%d] = %f\n", t, i, gamma[t][i]);
cannam@19 540 }
cannam@19 541 }
cannam@19 542
cannam@19 543 for (t = 0; t < T-1; t++)
cannam@19 544 {
cannam@19 545 tot = 0;
cannam@19 546 for (i = 0; i < N; i++)
cannam@19 547 {
cannam@19 548 for (j = 0; j < N; j++)
cannam@19 549 {
cannam@19 550 xi[t][i][j] = alpha[t][i] * a[i][j] * b[t+1][j] * beta[t+1][j];
cannam@19 551 tot += xi[t][i][j];
cannam@19 552 }
cannam@19 553 }
cannam@19 554 for (i = 0; i < N; i++)
cannam@19 555 for (j = 0; j < N; j++)
cannam@19 556 xi[t][i][j] /= tot;
cannam@19 557 }
cannam@19 558
cannam@19 559 /*
cannam@19 560 // CHECK - fine
cannam@19 561 // gamma[t][i] = \sum_j{xi[t][i][j]}
cannam@19 562 tot = 0;
cannam@19 563 for (j = 0; j < N; j++)
cannam@19 564 tot += xi[3][1][j];
cannam@19 565 printf("gamma[3][1] = %f, sum_j(xi[3][1][j]) = %f\n", gamma[3][1], tot);
cannam@19 566 */
cannam@19 567
cannam@19 568 for (t = 0; t < T; t++)
cannam@19 569 {
cannam@19 570 free(alpha[t]);
cannam@19 571 free(beta[t]);
cannam@19 572 }
cannam@19 573 free(alpha);
cannam@19 574 free(beta);
cannam@19 575 free(c);
cannam@19 576 }
cannam@19 577
cannam@19 578 void viterbi_decode(double** x, int T, model_t* model, int* q)
cannam@19 579 {
cannam@19 580 int i, j, t;
cannam@19 581 double max;
cannam@48 582 int havemax;
cannam@19 583
cannam@19 584 int N = model->N;
cannam@19 585 int L = model->L;
cannam@19 586 double* p0 = model->p0;
cannam@19 587 double** a = model->a;
cannam@19 588 double** mu = model->mu;
cannam@19 589 double** cov = model->cov;
cannam@19 590
cannam@19 591 /* inverse covariance and its determinant */
cannam@19 592 double** icov = (double**) malloc(L*sizeof(double*));
cannam@19 593 for (i = 0; i < L; i++)
cannam@19 594 icov[i] = (double*) malloc(L*sizeof(double));
cannam@19 595 double detcov;
cannam@19 596
cannam@19 597 double** logb = (double**) malloc(T*sizeof(double*));
cannam@19 598 double** phi = (double**) malloc(T*sizeof(double*));
cannam@19 599 int** psi = (int**) malloc(T*sizeof(int*));
cannam@19 600 for (t = 0; t < T; t++)
cannam@19 601 {
cannam@19 602 logb[t] = (double*) malloc(N*sizeof(double));
cannam@19 603 phi[t] = (double*) malloc(N*sizeof(double));
cannam@19 604 psi[t] = (int*) malloc(N*sizeof(int));
cannam@19 605 }
cannam@19 606
cannam@19 607 /* temporary memory */
cannam@19 608 double* gauss_y = (double*) malloc(L*sizeof(double));
cannam@19 609 double* gauss_z = (double*) malloc(L*sizeof(double));
cannam@19 610
cannam@19 611 /* calculate observation logprobs */
cannam@19 612 invert(cov, L, icov, &detcov);
cannam@19 613 for (t = 0; t < T; t++)
cannam@19 614 for (i = 0; i < N; i++)
cannam@19 615 logb[t][i] = loggauss(x[t], L, mu[i], icov, detcov, gauss_y, gauss_z);
cannam@19 616
cannam@19 617 /* initialise */
cannam@19 618 for (i = 0; i < N; i++)
cannam@19 619 {
cannam@19 620 phi[0][i] = log(p0[i]) + logb[0][i];
cannam@19 621 psi[0][i] = 0;
cannam@19 622 }
cannam@19 623
cannam@19 624 for (t = 1; t < T; t++)
cannam@19 625 {
cannam@19 626 for (j = 0; j < N; j++)
cannam@19 627 {
cannam@48 628 max = -1000000;
cannam@48 629 havemax = 0;
cannam@48 630
cannam@19 631 psi[t][j] = 0;
cannam@19 632 for (i = 0; i < N; i++)
cannam@19 633 {
cannam@48 634 if (phi[t-1][i] + log(a[i][j]) > max || !havemax)
cannam@19 635 {
cannam@19 636 max = phi[t-1][i] + log(a[i][j]);
cannam@19 637 phi[t][j] = max + logb[t][j];
cannam@19 638 psi[t][j] = i;
cannam@48 639 havemax = 1;
cannam@19 640 }
cannam@19 641 }
cannam@19 642 }
cannam@19 643 }
cannam@19 644
cannam@19 645 /* find maximising state at time T-1 */
cannam@19 646 max = phi[T-1][0];
cannam@19 647 q[T-1] = 0;
cannam@19 648 for (i = 1; i < N; i++)
cannam@19 649 {
cannam@19 650 if (phi[T-1][i] > max)
cannam@19 651 {
cannam@19 652 max = phi[T-1][i];
cannam@19 653 q[T-1] = i;
cannam@19 654 }
cannam@19 655 }
cannam@19 656
cannam@19 657
cannam@19 658 /* track back */
cannam@19 659 t = T - 2;
cannam@19 660 while (t >= 0)
cannam@19 661 {
cannam@19 662 q[t] = psi[t+1][q[t+1]];
cannam@19 663 t--;
cannam@19 664 }
cannam@19 665
cannam@19 666 /* de-allocate memory */
cannam@19 667 for (i = 0; i < L; i++)
cannam@19 668 free(icov[i]);
cannam@19 669 free(icov);
cannam@19 670 for (t = 0; t < T; t++)
cannam@19 671 {
cannam@19 672 free(logb[t]);
cannam@19 673 free(phi[t]);
cannam@19 674 free(psi[t]);
cannam@19 675 }
cannam@19 676 free(logb);
cannam@19 677 free(phi);
cannam@19 678 free(psi);
cannam@19 679
cannam@19 680 free(gauss_y);
cannam@19 681 free(gauss_z);
cannam@19 682 }
cannam@19 683
cannam@19 684 /* invert matrix and calculate determinant using LAPACK */
cannam@19 685 void invert(double** cov, int L, double** icov, double* detcov)
cannam@19 686 {
cannam@19 687 /* copy square matrix into a vector in column-major order */
cannam@19 688 double* a = (double*) malloc(L*L*sizeof(double));
cannam@19 689 int i, j;
cannam@19 690 for(j=0; j < L; j++)
cannam@19 691 for (i=0; i < L; i++)
cannam@19 692 a[j*L+i] = cov[i][j];
cannam@19 693
cannam@44 694 int M = (int) L;
cannam@44 695 int* ipiv = (int *) malloc(L*L*sizeof(int));
cannam@44 696 int ret;
cannam@19 697
cannam@19 698 /* LU decomposition */
cannam@19 699 ret = dgetrf_(&M, &M, a, &M, ipiv, &ret); /* ret should be zero, negative if cov is singular */
cannam@19 700 if (ret < 0)
cannam@19 701 {
cannam@19 702 fprintf(stderr, "Covariance matrix was singular, couldn't invert\n");
cannam@19 703 exit(-1);
cannam@19 704 }
cannam@19 705
cannam@19 706 /* find determinant */
cannam@19 707 double det = 1;
cannam@19 708 for(i = 0; i < L; i++)
cannam@19 709 det *= a[i*L+i];
cannam@19 710 // TODO: get this to work!!! If detcov < 0 then cov is bad anyway...
cannam@19 711 /*
cannam@19 712 int sign = 1;
cannam@19 713 for (i = 0; i < L; i++)
cannam@19 714 if (ipiv[i] != i)
cannam@19 715 sign = -sign;
cannam@19 716 det *= sign;
cannam@19 717 */
cannam@19 718 if (det < 0)
cannam@19 719 det = -det;
cannam@19 720 *detcov = det;
cannam@19 721
cannam@19 722 /* allocate required working storage */
cannam@44 723 #ifndef HAVE_ATLAS
cannam@44 724 int lwork = -1;
cannam@44 725 double lwbest = 0.0;
cannam@19 726 dgetri_(&M, a, &M, ipiv, &lwbest, &lwork, &ret);
cannam@44 727 lwork = (int) lwbest;
cannam@19 728 double* work = (double*) malloc(lwork*sizeof(double));
cannam@44 729 #endif
cannam@19 730
cannam@19 731 /* find inverse */
cannam@19 732 dgetri_(&M, a, &M, ipiv, work, &lwork, &ret);
cannam@44 733
cannam@19 734 for(j=0; j < L; j++)
cannam@19 735 for (i=0; i < L; i++)
cannam@19 736 icov[i][j] = a[j*L+i];
cannam@19 737
cannam@44 738 #ifndef HAVE_ATLAS
cannam@19 739 free(work);
cannam@44 740 #endif
cannam@19 741 free(a);
cannam@19 742 }
cannam@19 743
cannam@19 744 /* probability of multivariate Gaussian given mean, inverse and determinant of covariance */
cannam@19 745 double gauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
cannam@19 746 {
cannam@19 747 int i, j;
cannam@19 748 double s = 0;
cannam@19 749 for (i = 0; i < L; i++)
cannam@19 750 y[i] = x[i] - mu[i];
cannam@19 751 for (i = 0; i < L; i++)
cannam@19 752 {
cannam@19 753 //z[i] = 0;
cannam@19 754 //for (j = 0; j < L; j++)
cannam@19 755 // z[i] += icov[i][j] * y[j];
cannam@19 756 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
cannam@19 757 }
cannam@19 758 s = cblas_ddot(L, z, 1, y, 1);
cannam@19 759 //for (i = 0; i < L; i++)
cannam@19 760 // s += z[i] * y[i];
cannam@19 761
cannam@19 762 return exp(-s/2.0) / (pow(2*PI, L/2.0) * sqrt(detcov));
cannam@19 763 }
cannam@19 764
cannam@19 765 /* log probability of multivariate Gaussian given mean, inverse and determinant of covariance */
cannam@19 766 double loggauss(double* x, int L, double* mu, double** icov, double detcov, double* y, double* z)
cannam@19 767 {
cannam@19 768 int i, j;
cannam@19 769 double s = 0;
cannam@19 770 double ret;
cannam@19 771 for (i = 0; i < L; i++)
cannam@19 772 y[i] = x[i] - mu[i];
cannam@19 773 for (i = 0; i < L; i++)
cannam@19 774 {
cannam@19 775 //z[i] = 0;
cannam@19 776 //for (j = 0; j < L; j++)
cannam@19 777 // z[i] += icov[i][j] * y[j];
cannam@19 778 z[i] = cblas_ddot(L, &icov[i][0], 1, y, 1);
cannam@19 779 }
cannam@19 780 s = cblas_ddot(L, z, 1, y, 1);
cannam@19 781 //for (i = 0; i < L; i++)
cannam@19 782 // s += z[i] * y[i];
cannam@19 783
cannam@19 784 ret = -0.5 * (s + L * log(2*PI) + log(detcov));
cannam@19 785
cannam@19 786 /*
cannam@19 787 // TEST
cannam@79 788 if (ISINF(ret) > 0)
cannam@19 789 printf("loggauss returning infinity\n");
cannam@79 790 if (ISINF(ret) < 0)
cannam@19 791 printf("loggauss returning -infinity\n");
cannam@79 792 if (ISNAN(ret))
cannam@19 793 printf("loggauss returning nan\n");
cannam@19 794 */
cannam@19 795
cannam@19 796 return ret;
cannam@19 797 }
cannam@19 798
cannam@19 799 void hmm_print(model_t* model)
cannam@19 800 {
cannam@19 801 int i, j;
cannam@19 802 printf("p0:\n");
cannam@19 803 for (i = 0; i < model->N; i++)
cannam@19 804 printf("%f ", model->p0[i]);
cannam@19 805 printf("\n\n");
cannam@19 806 printf("a:\n");
cannam@19 807 for (i = 0; i < model->N; i++)
cannam@19 808 {
cannam@19 809 for (j = 0; j < model->N; j++)
cannam@19 810 printf("%f ", model->a[i][j]);
cannam@19 811 printf("\n");
cannam@19 812 }
cannam@19 813 printf("\n\n");
cannam@19 814 printf("mu:\n");
cannam@19 815 for (i = 0; i < model->N; i++)
cannam@19 816 {
cannam@19 817 for (j = 0; j < model->L; j++)
cannam@19 818 printf("%f ", model->mu[i][j]);
cannam@19 819 printf("\n");
cannam@19 820 }
cannam@19 821 printf("\n\n");
cannam@19 822 printf("cov:\n");
cannam@19 823 for (i = 0; i < model->L; i++)
cannam@19 824 {
cannam@19 825 for (j = 0; j < model->L; j++)
cannam@19 826 printf("%f ", model->cov[i][j]);
cannam@19 827 printf("\n");
cannam@19 828 }
cannam@19 829 printf("\n\n");
cannam@19 830 }
cannam@19 831
cannam@19 832