annotate dsp/chromagram/Chromagram.cpp @ 276:4c901426b9f3

* Do not calculate CQ sparse kernel when chromagram is constructed: only when it's actually used * Pre-calculate CQ sparse kernels in the sizes required for the default configurations of some of our transforms
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 04 Dec 2008 11:59:29 +0000
parents c96785becf96
children 6cb2b3cd5356
rev   line source
c@225 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@225 2
c@225 3 /*
c@225 4 QM DSP Library
c@225 5
c@225 6 Centre for Digital Music, Queen Mary, University of London.
c@225 7 This file copyright 2005-2006 Christian Landone.
c@225 8 All rights reserved.
c@225 9 */
c@225 10
c@225 11 #include <iostream>
c@225 12 #include <cmath>
c@241 13 #include "maths/MathUtilities.h"
c@225 14 #include "Chromagram.h"
c@225 15
c@225 16 //----------------------------------------------------------------------------
c@225 17
c@276 18 Chromagram::Chromagram( ChromaConfig Config ) :
c@276 19 m_skGenerated(false)
c@225 20 {
c@225 21 initialise( Config );
c@225 22 }
c@225 23
c@225 24 int Chromagram::initialise( ChromaConfig Config )
c@225 25 {
c@225 26 m_FMin = Config.min; // min freq
c@225 27 m_FMax = Config.max; // max freq
c@225 28 m_BPO = Config.BPO; // bins per octave
c@259 29 m_normalise = Config.normalise; // if frame normalisation is required
c@225 30
c@225 31 // No. of constant Q bins
c@225 32 m_uK = ( unsigned int ) ceil( m_BPO * log(m_FMax/m_FMin)/log(2.0));
c@225 33
c@225 34 // Create array for chroma result
c@225 35 m_chromadata = new double[ m_BPO ];
c@225 36
c@225 37 // Initialise FFT object
c@225 38 m_FFT = new FFT;
c@225 39
c@225 40 // Create Config Structure for ConstantQ operator
c@225 41 CQConfig ConstantQConfig;
c@225 42
c@225 43 // Populate CQ config structure with parameters
c@225 44 // inherited from the Chroma config
c@225 45 ConstantQConfig.FS = Config.FS;
c@225 46 ConstantQConfig.min = m_FMin;
c@225 47 ConstantQConfig.max = m_FMax;
c@225 48 ConstantQConfig.BPO = m_BPO;
c@225 49 ConstantQConfig.CQThresh = Config.CQThresh;
c@225 50
c@225 51 // Initialise ConstantQ operator
c@225 52 m_ConstantQ = new ConstantQ( ConstantQConfig );
c@225 53
c@225 54 // Initialise working arrays
c@225 55 m_frameSize = m_ConstantQ->getfftlength();
c@225 56 m_hopSize = m_ConstantQ->gethop();
c@225 57
c@225 58 m_FFTRe = new double[ m_frameSize ];
c@225 59 m_FFTIm = new double[ m_frameSize ];
c@225 60 m_CQRe = new double[ m_uK ];
c@225 61 m_CQIm = new double[ m_uK ];
c@225 62
c@257 63 m_window = 0;
c@257 64 m_windowbuf = 0;
c@257 65
c@225 66 return 1;
c@225 67 }
c@225 68
c@225 69 Chromagram::~Chromagram()
c@225 70 {
c@225 71 deInitialise();
c@225 72 }
c@225 73
c@225 74 int Chromagram::deInitialise()
c@225 75 {
c@257 76 delete[] m_windowbuf;
c@257 77 delete m_window;
c@257 78
c@225 79 delete [] m_chromadata;
c@225 80
c@225 81 delete m_FFT;
c@225 82
c@225 83 delete m_ConstantQ;
c@225 84
c@225 85 delete [] m_FFTRe;
c@225 86 delete [] m_FFTIm;
c@225 87 delete [] m_CQRe;
c@225 88 delete [] m_CQIm;
c@225 89 return 1;
c@225 90 }
c@225 91
c@225 92 //----------------------------------------------------------------------------------
c@225 93 // returns the absolute value of complex number xx + i*yy
c@225 94 double Chromagram::kabs(double xx, double yy)
c@225 95 {
c@225 96 double ab = sqrt(xx*xx + yy*yy);
c@225 97 return(ab);
c@225 98 }
c@225 99 //-----------------------------------------------------------------------------------
c@225 100
c@225 101
c@225 102 void Chromagram::unityNormalise(double *src)
c@225 103 {
c@225 104 double min, max;
c@225 105
c@225 106 double val = 0;
c@225 107
c@225 108 MathUtilities::getFrameMinMax( src, m_BPO, & min, &max );
c@225 109
c@225 110 for( unsigned int i = 0; i < m_BPO; i++ )
c@225 111 {
c@225 112 val = src[ i ] / max;
c@225 113
c@225 114 src[ i ] = val;
c@225 115 }
c@225 116 }
c@225 117
c@225 118
c@257 119 double* Chromagram::process( const double *data )
c@225 120 {
c@276 121 if (!m_skGenerated) {
c@276 122 // Generate CQ Kernel
c@276 123 m_ConstantQ->sparsekernel();
c@276 124 m_skGenerated = true;
c@276 125 }
c@276 126
c@257 127 if (!m_window) {
c@257 128 m_window = new Window<double>(HammingWindow, m_frameSize);
c@257 129 m_windowbuf = new double[m_frameSize];
c@257 130 }
c@257 131
c@257 132 for (int i = 0; i < m_frameSize; ++i) {
c@257 133 m_windowbuf[i] = data[i];
c@257 134 }
c@257 135 m_window->cut(m_windowbuf);
c@257 136
c@228 137 // FFT of current frame
c@257 138 m_FFT->process(m_frameSize, 0, m_windowbuf, NULL, m_FFTRe, m_FFTIm);
c@228 139
c@228 140 return process(m_FFTRe, m_FFTIm);
c@228 141 }
c@228 142
c@257 143 double* Chromagram::process( const double *real, const double *imag )
c@228 144 {
c@276 145 if (!m_skGenerated) {
c@276 146 // Generate CQ Kernel
c@276 147 m_ConstantQ->sparsekernel();
c@276 148 m_skGenerated = true;
c@276 149 }
c@276 150
c@228 151 // initialise chromadata to 0
c@228 152 for (unsigned i = 0; i < m_BPO; i++) m_chromadata[i] = 0;
c@225 153
c@225 154 double cmax = 0.0;
c@225 155 double cval = 0;
c@225 156
c@225 157 // Calculate ConstantQ frame
c@228 158 m_ConstantQ->process( real, imag, m_CQRe, m_CQIm );
c@225 159
c@225 160 // add each octave of cq data into Chromagram
c@225 161 const unsigned octaves = (int)floor(double( m_uK/m_BPO))-1;
c@228 162 for (unsigned octave = 0; octave <= octaves; octave++)
c@225 163 {
c@225 164 unsigned firstBin = octave*m_BPO;
c@228 165 for (unsigned i = 0; i < m_BPO; i++)
c@225 166 {
c@225 167 m_chromadata[i] += kabs( m_CQRe[ firstBin + i ], m_CQIm[ firstBin + i ]);
c@225 168 }
c@225 169 }
c@225 170
c@259 171 MathUtilities::normalise(m_chromadata, m_BPO, m_normalise);
c@225 172
c@225 173 return m_chromadata;
c@225 174 }
c@225 175
c@225 176