annotate dsp/chromagram/Chromagram.cpp @ 257:9619d6995b73

* Add windowing to Chromagram input * Add window option to MFCC config
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 18 Jan 2008 17:57:40 +0000
parents a98dd8ec96f8
children ad645e404d0c
rev   line source
c@225 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@225 2
c@225 3 /*
c@225 4 QM DSP Library
c@225 5
c@225 6 Centre for Digital Music, Queen Mary, University of London.
c@225 7 This file copyright 2005-2006 Christian Landone.
c@225 8 All rights reserved.
c@225 9 */
c@225 10
c@225 11 #include <iostream>
c@225 12 #include <cmath>
c@241 13 #include "maths/MathUtilities.h"
c@225 14 #include "Chromagram.h"
c@225 15
c@225 16 //----------------------------------------------------------------------------
c@225 17
c@225 18 Chromagram::Chromagram( ChromaConfig Config )
c@225 19 {
c@225 20 initialise( Config );
c@225 21 }
c@225 22
c@225 23 int Chromagram::initialise( ChromaConfig Config )
c@225 24 {
c@225 25 m_FMin = Config.min; // min freq
c@225 26 m_FMax = Config.max; // max freq
c@225 27 m_BPO = Config.BPO; // bins per octave
c@225 28 isNormalised = Config.isNormalised; // true if frame normalisation is required
c@225 29
c@225 30 // No. of constant Q bins
c@225 31 m_uK = ( unsigned int ) ceil( m_BPO * log(m_FMax/m_FMin)/log(2.0));
c@225 32
c@225 33 // Create array for chroma result
c@225 34 m_chromadata = new double[ m_BPO ];
c@225 35
c@225 36 // Initialise FFT object
c@225 37 m_FFT = new FFT;
c@225 38
c@225 39 // Create Config Structure for ConstantQ operator
c@225 40 CQConfig ConstantQConfig;
c@225 41
c@225 42 // Populate CQ config structure with parameters
c@225 43 // inherited from the Chroma config
c@225 44 ConstantQConfig.FS = Config.FS;
c@225 45 ConstantQConfig.min = m_FMin;
c@225 46 ConstantQConfig.max = m_FMax;
c@225 47 ConstantQConfig.BPO = m_BPO;
c@225 48 ConstantQConfig.CQThresh = Config.CQThresh;
c@225 49
c@225 50 // Initialise ConstantQ operator
c@225 51 m_ConstantQ = new ConstantQ( ConstantQConfig );
c@225 52
c@225 53 // Initialise working arrays
c@225 54 m_frameSize = m_ConstantQ->getfftlength();
c@225 55 m_hopSize = m_ConstantQ->gethop();
c@225 56
c@225 57 m_FFTRe = new double[ m_frameSize ];
c@225 58 m_FFTIm = new double[ m_frameSize ];
c@225 59 m_CQRe = new double[ m_uK ];
c@225 60 m_CQIm = new double[ m_uK ];
c@225 61
c@257 62 m_window = 0;
c@257 63 m_windowbuf = 0;
c@257 64
c@225 65 // Generate CQ Kernel
c@225 66 m_ConstantQ->sparsekernel();
c@225 67 return 1;
c@225 68 }
c@225 69
c@225 70 Chromagram::~Chromagram()
c@225 71 {
c@225 72 deInitialise();
c@225 73 }
c@225 74
c@225 75 int Chromagram::deInitialise()
c@225 76 {
c@257 77 delete[] m_windowbuf;
c@257 78 delete m_window;
c@257 79
c@225 80 delete [] m_chromadata;
c@225 81
c@225 82 delete m_FFT;
c@225 83
c@225 84 delete m_ConstantQ;
c@225 85
c@225 86 delete [] m_FFTRe;
c@225 87 delete [] m_FFTIm;
c@225 88 delete [] m_CQRe;
c@225 89 delete [] m_CQIm;
c@225 90 return 1;
c@225 91 }
c@225 92
c@225 93 //----------------------------------------------------------------------------------
c@225 94 // returns the absolute value of complex number xx + i*yy
c@225 95 double Chromagram::kabs(double xx, double yy)
c@225 96 {
c@225 97 double ab = sqrt(xx*xx + yy*yy);
c@225 98 return(ab);
c@225 99 }
c@225 100 //-----------------------------------------------------------------------------------
c@225 101
c@225 102
c@225 103 void Chromagram::unityNormalise(double *src)
c@225 104 {
c@225 105 double min, max;
c@225 106
c@225 107 double val = 0;
c@225 108
c@225 109 MathUtilities::getFrameMinMax( src, m_BPO, & min, &max );
c@225 110
c@225 111 for( unsigned int i = 0; i < m_BPO; i++ )
c@225 112 {
c@225 113 val = src[ i ] / max;
c@225 114
c@225 115 src[ i ] = val;
c@225 116 }
c@225 117 }
c@225 118
c@225 119
c@257 120 double* Chromagram::process( const double *data )
c@225 121 {
c@257 122 if (!m_window) {
c@257 123 m_window = new Window<double>(HammingWindow, m_frameSize);
c@257 124 m_windowbuf = new double[m_frameSize];
c@257 125 }
c@257 126
c@257 127 for (int i = 0; i < m_frameSize; ++i) {
c@257 128 m_windowbuf[i] = data[i];
c@257 129 }
c@257 130 m_window->cut(m_windowbuf);
c@257 131
c@228 132 // FFT of current frame
c@257 133 m_FFT->process(m_frameSize, 0, m_windowbuf, NULL, m_FFTRe, m_FFTIm);
c@228 134
c@228 135 return process(m_FFTRe, m_FFTIm);
c@228 136 }
c@228 137
c@257 138 double* Chromagram::process( const double *real, const double *imag )
c@228 139 {
c@228 140 // initialise chromadata to 0
c@228 141 for (unsigned i = 0; i < m_BPO; i++) m_chromadata[i] = 0;
c@225 142
c@225 143 double cmax = 0.0;
c@225 144 double cval = 0;
c@225 145
c@225 146 // Calculate ConstantQ frame
c@228 147 m_ConstantQ->process( real, imag, m_CQRe, m_CQIm );
c@225 148
c@225 149 // add each octave of cq data into Chromagram
c@225 150 const unsigned octaves = (int)floor(double( m_uK/m_BPO))-1;
c@228 151 for (unsigned octave = 0; octave <= octaves; octave++)
c@225 152 {
c@225 153 unsigned firstBin = octave*m_BPO;
c@228 154 for (unsigned i = 0; i < m_BPO; i++)
c@225 155 {
c@225 156 m_chromadata[i] += kabs( m_CQRe[ firstBin + i ], m_CQIm[ firstBin + i ]);
c@225 157 }
c@225 158 }
c@225 159
c@225 160 if( isNormalised )
c@225 161 unityNormalise( m_chromadata );
c@225 162
c@225 163 return m_chromadata;
c@225 164 }
c@225 165
c@225 166