annotate dsp/onsets/DetectionFunction.cpp @ 356:42d416af5030

Frame length no longer needs to be a power of two
author Chris Cannam <c.cannam@qmul.ac.uk>
date Tue, 15 Oct 2013 11:52:00 +0100
parents 04d134031a15
children 2ae4ceb76ac3
rev   line source
c@225 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@225 2
c@225 3 /*
c@225 4 QM DSP Library
c@225 5
c@225 6 Centre for Digital Music, Queen Mary, University of London.
c@309 7 This file 2005-2006 Christian Landone.
c@309 8
c@309 9 This program is free software; you can redistribute it and/or
c@309 10 modify it under the terms of the GNU General Public License as
c@309 11 published by the Free Software Foundation; either version 2 of the
c@309 12 License, or (at your option) any later version. See the file
c@309 13 COPYING included with this distribution for more information.
c@225 14 */
c@225 15
c@225 16 #include "DetectionFunction.h"
c@272 17 #include <cstring>
c@225 18
c@225 19 //////////////////////////////////////////////////////////////////////
c@225 20 // Construction/Destruction
c@225 21 //////////////////////////////////////////////////////////////////////
c@225 22
c@225 23 DetectionFunction::DetectionFunction( DFConfig Config ) :
c@225 24 m_window(0)
c@225 25 {
c@227 26 m_magHistory = NULL;
c@227 27 m_phaseHistory = NULL;
c@227 28 m_phaseHistoryOld = NULL;
c@239 29 m_magPeaks = NULL;
c@225 30
c@225 31 initialise( Config );
c@225 32 }
c@225 33
c@225 34 DetectionFunction::~DetectionFunction()
c@225 35 {
c@225 36 deInitialise();
c@225 37 }
c@225 38
c@225 39
c@225 40 void DetectionFunction::initialise( DFConfig Config )
c@225 41 {
c@225 42 m_dataLength = Config.frameLength;
c@340 43 m_halfLength = m_dataLength/2 + 1;
c@239 44
c@225 45 m_DFType = Config.DFType;
c@238 46 m_stepSize = Config.stepSize;
c@225 47
c@239 48 m_whiten = Config.adaptiveWhitening;
c@239 49 m_whitenRelaxCoeff = Config.whiteningRelaxCoeff;
c@239 50 m_whitenFloor = Config.whiteningFloor;
c@239 51 if (m_whitenRelaxCoeff < 0) m_whitenRelaxCoeff = 0.9997;
c@239 52 if (m_whitenFloor < 0) m_whitenFloor = 0.01;
c@239 53
c@227 54 m_magHistory = new double[ m_halfLength ];
c@227 55 memset(m_magHistory,0, m_halfLength*sizeof(double));
c@225 56
c@227 57 m_phaseHistory = new double[ m_halfLength ];
c@227 58 memset(m_phaseHistory,0, m_halfLength*sizeof(double));
c@225 59
c@227 60 m_phaseHistoryOld = new double[ m_halfLength ];
c@227 61 memset(m_phaseHistoryOld,0, m_halfLength*sizeof(double));
c@225 62
c@239 63 m_magPeaks = new double[ m_halfLength ];
c@239 64 memset(m_magPeaks,0, m_halfLength*sizeof(double));
c@239 65
c@356 66 m_phaseVoc = new PhaseVocoder(m_dataLength, m_stepSize);
c@225 67
c@225 68 m_magnitude = new double[ m_halfLength ];
c@225 69 m_thetaAngle = new double[ m_halfLength ];
c@340 70 m_unwrapped = new double[ m_halfLength ];
c@225 71
c@225 72 m_window = new Window<double>(HanningWindow, m_dataLength);
c@344 73 m_windowed = new double[ m_dataLength ];
c@225 74 }
c@225 75
c@225 76 void DetectionFunction::deInitialise()
c@225 77 {
c@227 78 delete [] m_magHistory ;
c@227 79 delete [] m_phaseHistory ;
c@227 80 delete [] m_phaseHistoryOld ;
c@239 81 delete [] m_magPeaks ;
c@225 82
c@225 83 delete m_phaseVoc;
c@225 84
c@225 85 delete [] m_magnitude;
c@225 86 delete [] m_thetaAngle;
c@344 87 delete [] m_windowed;
c@344 88 delete [] m_unwrapped;
c@225 89
c@225 90 delete m_window;
c@225 91 }
c@225 92
c@344 93 double DetectionFunction::processTimeDomain(const double *samples)
c@225 94 {
c@344 95 m_window->cut(samples, m_windowed);
c@280 96
c@344 97 m_phaseVoc->processTimeDomain(m_windowed,
c@344 98 m_magnitude, m_thetaAngle, m_unwrapped);
c@225 99
c@239 100 if (m_whiten) whiten();
c@239 101
c@227 102 return runDF();
c@227 103 }
c@227 104
c@344 105 double DetectionFunction::processFrequencyDomain(const double *reals,
c@344 106 const double *imags)
c@227 107 {
c@344 108 m_phaseVoc->processFrequencyDomain(reals, imags,
c@344 109 m_magnitude, m_thetaAngle, m_unwrapped);
c@227 110
c@239 111 if (m_whiten) whiten();
c@239 112
c@227 113 return runDF();
c@227 114 }
c@227 115
c@239 116 void DetectionFunction::whiten()
c@239 117 {
c@239 118 for (unsigned int i = 0; i < m_halfLength; ++i) {
c@239 119 double m = m_magnitude[i];
c@239 120 if (m < m_magPeaks[i]) {
c@239 121 m = m + (m_magPeaks[i] - m) * m_whitenRelaxCoeff;
c@239 122 }
c@239 123 if (m < m_whitenFloor) m = m_whitenFloor;
c@239 124 m_magPeaks[i] = m;
c@239 125 m_magnitude[i] /= m;
c@239 126 }
c@239 127 }
c@239 128
c@227 129 double DetectionFunction::runDF()
c@227 130 {
c@227 131 double retVal = 0;
c@227 132
c@225 133 switch( m_DFType )
c@225 134 {
c@225 135 case DF_HFC:
c@225 136 retVal = HFC( m_halfLength, m_magnitude);
c@225 137 break;
c@225 138
c@238 139 case DF_SPECDIFF:
c@225 140 retVal = specDiff( m_halfLength, m_magnitude);
c@225 141 break;
c@225 142
c@225 143 case DF_PHASEDEV:
c@345 144 // Using the instantaneous phases here actually provides the
c@345 145 // same results (for these calculations) as if we had used
c@345 146 // unwrapped phases, but without the possible accumulation of
c@345 147 // phase error over time
c@239 148 retVal = phaseDev( m_halfLength, m_thetaAngle);
c@225 149 break;
c@225 150
c@225 151 case DF_COMPLEXSD:
c@225 152 retVal = complexSD( m_halfLength, m_magnitude, m_thetaAngle);
c@225 153 break;
c@237 154
c@237 155 case DF_BROADBAND:
c@239 156 retVal = broadband( m_halfLength, m_magnitude);
c@239 157 break;
c@225 158 }
c@225 159
c@225 160 return retVal;
c@225 161 }
c@225 162
c@225 163 double DetectionFunction::HFC(unsigned int length, double *src)
c@225 164 {
c@225 165 unsigned int i;
c@225 166 double val = 0;
c@225 167
c@225 168 for( i = 0; i < length; i++)
c@225 169 {
c@225 170 val += src[ i ] * ( i + 1);
c@225 171 }
c@225 172 return val;
c@225 173 }
c@225 174
c@225 175 double DetectionFunction::specDiff(unsigned int length, double *src)
c@225 176 {
c@225 177 unsigned int i;
c@225 178 double val = 0.0;
c@225 179 double temp = 0.0;
c@225 180 double diff = 0.0;
c@225 181
c@225 182 for( i = 0; i < length; i++)
c@225 183 {
c@227 184 temp = fabs( (src[ i ] * src[ i ]) - (m_magHistory[ i ] * m_magHistory[ i ]) );
c@225 185
c@225 186 diff= sqrt(temp);
c@225 187
c@238 188 // (See note in phaseDev below.)
c@238 189
c@238 190 val += diff;
c@225 191
c@227 192 m_magHistory[ i ] = src[ i ];
c@225 193 }
c@225 194
c@225 195 return val;
c@225 196 }
c@225 197
c@225 198
c@239 199 double DetectionFunction::phaseDev(unsigned int length, double *srcPhase)
c@225 200 {
c@225 201 unsigned int i;
c@225 202 double tmpPhase = 0;
c@225 203 double tmpVal = 0;
c@225 204 double val = 0;
c@225 205
c@225 206 double dev = 0;
c@225 207
c@225 208 for( i = 0; i < length; i++)
c@225 209 {
c@227 210 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
c@225 211 dev = MathUtilities::princarg( tmpPhase );
c@238 212
c@238 213 // A previous version of this code only counted the value here
c@238 214 // if the magnitude exceeded 0.1. My impression is that
c@238 215 // doesn't greatly improve the results for "loud" music (so
c@238 216 // long as the peak picker is reasonably sophisticated), but
c@238 217 // does significantly damage its ability to work with quieter
c@238 218 // music, so I'm removing it and counting the result always.
c@238 219 // Same goes for the spectral difference measure above.
c@225 220
c@238 221 tmpVal = fabs(dev);
c@238 222 val += tmpVal ;
c@225 223
c@227 224 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
c@227 225 m_phaseHistory[ i ] = srcPhase[ i ];
c@225 226 }
c@225 227
c@225 228 return val;
c@225 229 }
c@225 230
c@225 231
c@225 232 double DetectionFunction::complexSD(unsigned int length, double *srcMagnitude, double *srcPhase)
c@225 233 {
c@225 234 unsigned int i;
c@225 235 double val = 0;
c@225 236 double tmpPhase = 0;
c@225 237 double tmpReal = 0;
c@225 238 double tmpImag = 0;
c@225 239
c@225 240 double dev = 0;
c@225 241 ComplexData meas = ComplexData( 0, 0 );
c@227 242 ComplexData j = ComplexData( 0, 1 );
c@225 243
c@225 244 for( i = 0; i < length; i++)
c@225 245 {
c@227 246 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
c@225 247 dev= MathUtilities::princarg( tmpPhase );
c@225 248
c@227 249 meas = m_magHistory[i] - ( srcMagnitude[ i ] * exp( j * dev) );
c@225 250
c@225 251 tmpReal = real( meas );
c@225 252 tmpImag = imag( meas );
c@225 253
c@225 254 val += sqrt( (tmpReal * tmpReal) + (tmpImag * tmpImag) );
c@225 255
c@227 256 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
c@227 257 m_phaseHistory[ i ] = srcPhase[ i ];
c@227 258 m_magHistory[ i ] = srcMagnitude[ i ];
c@225 259 }
c@225 260
c@225 261 return val;
c@225 262 }
c@225 263
c@239 264 double DetectionFunction::broadband(unsigned int length, double *src)
c@237 265 {
c@237 266 double val = 0;
c@237 267 for (unsigned int i = 0; i < length; ++i) {
c@239 268 double sqrmag = src[i] * src[i];
c@237 269 if (m_magHistory[i] > 0.0) {
c@237 270 double diff = 10.0 * log10(sqrmag / m_magHistory[i]);
c@237 271 if (diff > m_dbRise) val = val + 1;
c@237 272 }
c@237 273 m_magHistory[i] = sqrmag;
c@237 274 }
c@237 275 return val;
c@237 276 }
c@237 277
c@225 278 double* DetectionFunction::getSpectrumMagnitude()
c@225 279 {
c@225 280 return m_magnitude;
c@225 281 }
c@225 282