annotate dsp/onsets/DetectionFunction.cpp @ 309:d5014ab8b0e5

* Add GPL and README; some tidying
author Chris Cannam <c.cannam@qmul.ac.uk>
date Mon, 13 Dec 2010 14:55:28 +0000
parents befe5aa6b450
children 37449f085a4c
rev   line source
c@225 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@225 2
c@225 3 /*
c@225 4 QM DSP Library
c@225 5
c@225 6 Centre for Digital Music, Queen Mary, University of London.
c@309 7 This file 2005-2006 Christian Landone.
c@309 8
c@309 9 This program is free software; you can redistribute it and/or
c@309 10 modify it under the terms of the GNU General Public License as
c@309 11 published by the Free Software Foundation; either version 2 of the
c@309 12 License, or (at your option) any later version. See the file
c@309 13 COPYING included with this distribution for more information.
c@225 14 */
c@225 15
c@225 16 #include "DetectionFunction.h"
c@272 17 #include <cstring>
c@225 18
c@225 19 //////////////////////////////////////////////////////////////////////
c@225 20 // Construction/Destruction
c@225 21 //////////////////////////////////////////////////////////////////////
c@225 22
c@225 23 DetectionFunction::DetectionFunction( DFConfig Config ) :
c@225 24 m_window(0)
c@225 25 {
c@227 26 m_magHistory = NULL;
c@227 27 m_phaseHistory = NULL;
c@227 28 m_phaseHistoryOld = NULL;
c@239 29 m_magPeaks = NULL;
c@225 30
c@225 31 initialise( Config );
c@225 32 }
c@225 33
c@225 34 DetectionFunction::~DetectionFunction()
c@225 35 {
c@225 36 deInitialise();
c@225 37 }
c@225 38
c@225 39
c@225 40 void DetectionFunction::initialise( DFConfig Config )
c@225 41 {
c@225 42 m_dataLength = Config.frameLength;
c@225 43 m_halfLength = m_dataLength/2;
c@239 44
c@225 45 m_DFType = Config.DFType;
c@238 46 m_stepSize = Config.stepSize;
c@225 47
c@239 48 m_whiten = Config.adaptiveWhitening;
c@239 49 m_whitenRelaxCoeff = Config.whiteningRelaxCoeff;
c@239 50 m_whitenFloor = Config.whiteningFloor;
c@239 51 if (m_whitenRelaxCoeff < 0) m_whitenRelaxCoeff = 0.9997;
c@239 52 if (m_whitenFloor < 0) m_whitenFloor = 0.01;
c@239 53
c@227 54 m_magHistory = new double[ m_halfLength ];
c@227 55 memset(m_magHistory,0, m_halfLength*sizeof(double));
c@225 56
c@227 57 m_phaseHistory = new double[ m_halfLength ];
c@227 58 memset(m_phaseHistory,0, m_halfLength*sizeof(double));
c@225 59
c@227 60 m_phaseHistoryOld = new double[ m_halfLength ];
c@227 61 memset(m_phaseHistoryOld,0, m_halfLength*sizeof(double));
c@225 62
c@239 63 m_magPeaks = new double[ m_halfLength ];
c@239 64 memset(m_magPeaks,0, m_halfLength*sizeof(double));
c@239 65
c@289 66 // See note in process(const double *) below
c@289 67 int actualLength = MathUtilities::previousPowerOfTwo(m_dataLength);
c@289 68 m_phaseVoc = new PhaseVocoder(actualLength);
c@225 69
c@225 70 m_DFWindowedFrame = new double[ m_dataLength ];
c@225 71 m_magnitude = new double[ m_halfLength ];
c@225 72 m_thetaAngle = new double[ m_halfLength ];
c@225 73
c@225 74 m_window = new Window<double>(HanningWindow, m_dataLength);
c@225 75 }
c@225 76
c@225 77 void DetectionFunction::deInitialise()
c@225 78 {
c@227 79 delete [] m_magHistory ;
c@227 80 delete [] m_phaseHistory ;
c@227 81 delete [] m_phaseHistoryOld ;
c@239 82 delete [] m_magPeaks ;
c@225 83
c@225 84 delete m_phaseVoc;
c@225 85
c@225 86 delete [] m_DFWindowedFrame;
c@225 87 delete [] m_magnitude;
c@225 88 delete [] m_thetaAngle;
c@225 89
c@225 90 delete m_window;
c@225 91 }
c@225 92
c@280 93 double DetectionFunction::process( const double *TDomain )
c@225 94 {
c@225 95 m_window->cut( TDomain, m_DFWindowedFrame );
c@280 96
c@280 97 // Our own FFT implementation supports power-of-two sizes only.
c@280 98 // If we have to use this implementation (as opposed to the
c@280 99 // version of process() below that operates on frequency domain
c@280 100 // data directly), we will have to use the next smallest power of
c@280 101 // two from the block size. Results may vary accordingly!
c@280 102
c@280 103 int actualLength = MathUtilities::previousPowerOfTwo(m_dataLength);
c@280 104
c@280 105 if (actualLength != m_dataLength) {
c@280 106 // Pre-fill mag and phase vectors with zero, as the FFT output
c@280 107 // will not fill the arrays
c@280 108 for (int i = actualLength/2; i < m_dataLength/2; ++i) {
c@280 109 m_magnitude[i] = 0;
c@280 110 m_thetaAngle[0] = 0;
c@280 111 }
c@280 112 }
c@280 113
c@289 114 m_phaseVoc->process(m_DFWindowedFrame, m_magnitude, m_thetaAngle);
c@225 115
c@239 116 if (m_whiten) whiten();
c@239 117
c@227 118 return runDF();
c@227 119 }
c@227 120
c@280 121 double DetectionFunction::process( const double *magnitudes, const double *phases )
c@227 122 {
c@227 123 for (size_t i = 0; i < m_halfLength; ++i) {
c@227 124 m_magnitude[i] = magnitudes[i];
c@227 125 m_thetaAngle[i] = phases[i];
c@227 126 }
c@227 127
c@239 128 if (m_whiten) whiten();
c@239 129
c@227 130 return runDF();
c@227 131 }
c@227 132
c@239 133 void DetectionFunction::whiten()
c@239 134 {
c@239 135 for (unsigned int i = 0; i < m_halfLength; ++i) {
c@239 136 double m = m_magnitude[i];
c@239 137 if (m < m_magPeaks[i]) {
c@239 138 m = m + (m_magPeaks[i] - m) * m_whitenRelaxCoeff;
c@239 139 }
c@239 140 if (m < m_whitenFloor) m = m_whitenFloor;
c@239 141 m_magPeaks[i] = m;
c@239 142 m_magnitude[i] /= m;
c@239 143 }
c@239 144 }
c@239 145
c@227 146 double DetectionFunction::runDF()
c@227 147 {
c@227 148 double retVal = 0;
c@227 149
c@225 150 switch( m_DFType )
c@225 151 {
c@225 152 case DF_HFC:
c@225 153 retVal = HFC( m_halfLength, m_magnitude);
c@225 154 break;
c@225 155
c@238 156 case DF_SPECDIFF:
c@225 157 retVal = specDiff( m_halfLength, m_magnitude);
c@225 158 break;
c@225 159
c@225 160 case DF_PHASEDEV:
c@239 161 retVal = phaseDev( m_halfLength, m_thetaAngle);
c@225 162 break;
c@225 163
c@225 164 case DF_COMPLEXSD:
c@225 165 retVal = complexSD( m_halfLength, m_magnitude, m_thetaAngle);
c@225 166 break;
c@237 167
c@237 168 case DF_BROADBAND:
c@239 169 retVal = broadband( m_halfLength, m_magnitude);
c@239 170 break;
c@225 171 }
c@225 172
c@225 173 return retVal;
c@225 174 }
c@225 175
c@225 176 double DetectionFunction::HFC(unsigned int length, double *src)
c@225 177 {
c@225 178 unsigned int i;
c@225 179 double val = 0;
c@225 180
c@225 181 for( i = 0; i < length; i++)
c@225 182 {
c@225 183 val += src[ i ] * ( i + 1);
c@225 184 }
c@225 185 return val;
c@225 186 }
c@225 187
c@225 188 double DetectionFunction::specDiff(unsigned int length, double *src)
c@225 189 {
c@225 190 unsigned int i;
c@225 191 double val = 0.0;
c@225 192 double temp = 0.0;
c@225 193 double diff = 0.0;
c@225 194
c@225 195 for( i = 0; i < length; i++)
c@225 196 {
c@227 197 temp = fabs( (src[ i ] * src[ i ]) - (m_magHistory[ i ] * m_magHistory[ i ]) );
c@225 198
c@225 199 diff= sqrt(temp);
c@225 200
c@238 201 // (See note in phaseDev below.)
c@238 202
c@238 203 val += diff;
c@225 204
c@227 205 m_magHistory[ i ] = src[ i ];
c@225 206 }
c@225 207
c@225 208 return val;
c@225 209 }
c@225 210
c@225 211
c@239 212 double DetectionFunction::phaseDev(unsigned int length, double *srcPhase)
c@225 213 {
c@225 214 unsigned int i;
c@225 215 double tmpPhase = 0;
c@225 216 double tmpVal = 0;
c@225 217 double val = 0;
c@225 218
c@225 219 double dev = 0;
c@225 220
c@225 221 for( i = 0; i < length; i++)
c@225 222 {
c@227 223 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
c@225 224 dev = MathUtilities::princarg( tmpPhase );
c@238 225
c@238 226 // A previous version of this code only counted the value here
c@238 227 // if the magnitude exceeded 0.1. My impression is that
c@238 228 // doesn't greatly improve the results for "loud" music (so
c@238 229 // long as the peak picker is reasonably sophisticated), but
c@238 230 // does significantly damage its ability to work with quieter
c@238 231 // music, so I'm removing it and counting the result always.
c@238 232 // Same goes for the spectral difference measure above.
c@225 233
c@238 234 tmpVal = fabs(dev);
c@238 235 val += tmpVal ;
c@225 236
c@227 237 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
c@227 238 m_phaseHistory[ i ] = srcPhase[ i ];
c@225 239 }
c@225 240
c@225 241
c@225 242 return val;
c@225 243 }
c@225 244
c@225 245
c@225 246 double DetectionFunction::complexSD(unsigned int length, double *srcMagnitude, double *srcPhase)
c@225 247 {
c@225 248 unsigned int i;
c@225 249 double val = 0;
c@225 250 double tmpPhase = 0;
c@225 251 double tmpReal = 0;
c@225 252 double tmpImag = 0;
c@225 253
c@225 254 double dev = 0;
c@225 255 ComplexData meas = ComplexData( 0, 0 );
c@227 256 ComplexData j = ComplexData( 0, 1 );
c@225 257
c@225 258 for( i = 0; i < length; i++)
c@225 259 {
c@227 260 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
c@225 261 dev= MathUtilities::princarg( tmpPhase );
c@225 262
c@227 263 meas = m_magHistory[i] - ( srcMagnitude[ i ] * exp( j * dev) );
c@225 264
c@225 265 tmpReal = real( meas );
c@225 266 tmpImag = imag( meas );
c@225 267
c@225 268 val += sqrt( (tmpReal * tmpReal) + (tmpImag * tmpImag) );
c@225 269
c@227 270 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
c@227 271 m_phaseHistory[ i ] = srcPhase[ i ];
c@227 272 m_magHistory[ i ] = srcMagnitude[ i ];
c@225 273 }
c@225 274
c@225 275 return val;
c@225 276 }
c@225 277
c@239 278 double DetectionFunction::broadband(unsigned int length, double *src)
c@237 279 {
c@237 280 double val = 0;
c@237 281 for (unsigned int i = 0; i < length; ++i) {
c@239 282 double sqrmag = src[i] * src[i];
c@237 283 if (m_magHistory[i] > 0.0) {
c@237 284 double diff = 10.0 * log10(sqrmag / m_magHistory[i]);
c@237 285 if (diff > m_dbRise) val = val + 1;
c@237 286 }
c@237 287 m_magHistory[i] = sqrmag;
c@237 288 }
c@237 289 return val;
c@237 290 }
c@237 291
c@225 292 double* DetectionFunction::getSpectrumMagnitude()
c@225 293 {
c@225 294 return m_magnitude;
c@225 295 }
c@225 296