annotate BP/l1qc_logbarrier.m @ 0:8346c92b698f

Initial import
author nikcleju
date Thu, 20 Oct 2011 19:36:24 +0000
parents
children
rev   line source
nikcleju@0 1 % l1qc_logbarrier.m
nikcleju@0 2 %
nikcleju@0 3 % Solve quadratically constrained l1 minimization:
nikcleju@0 4 % min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon
nikcleju@0 5 %
nikcleju@0 6 % Reformulate as the second-order cone program
nikcleju@0 7 % min_{x,u} sum(u) s.t. x - u <= 0,
nikcleju@0 8 % -x - u <= 0,
nikcleju@0 9 % 1/2(||Ax-b||^2 - \epsilon^2) <= 0
nikcleju@0 10 % and use a log barrier algorithm.
nikcleju@0 11 %
nikcleju@0 12 % Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
nikcleju@0 13 %
nikcleju@0 14 % x0 - Nx1 vector, initial point.
nikcleju@0 15 %
nikcleju@0 16 % A - Either a handle to a function that takes a N vector and returns a K
nikcleju@0 17 % vector , or a KxN matrix. If A is a function handle, the algorithm
nikcleju@0 18 % operates in "largescale" mode, solving the Newton systems via the
nikcleju@0 19 % Conjugate Gradients algorithm.
nikcleju@0 20 %
nikcleju@0 21 % At - Handle to a function that takes a K vector and returns an N vector.
nikcleju@0 22 % If A is a KxN matrix, At is ignored.
nikcleju@0 23 %
nikcleju@0 24 % b - Kx1 vector of observations.
nikcleju@0 25 %
nikcleju@0 26 % epsilon - scalar, constraint relaxation parameter
nikcleju@0 27 %
nikcleju@0 28 % lbtol - The log barrier algorithm terminates when the duality gap <= lbtol.
nikcleju@0 29 % Also, the number of log barrier iterations is completely
nikcleju@0 30 % determined by lbtol.
nikcleju@0 31 % Default = 1e-3.
nikcleju@0 32 %
nikcleju@0 33 % mu - Factor by which to increase the barrier constant at each iteration.
nikcleju@0 34 % Default = 10.
nikcleju@0 35 %
nikcleju@0 36 % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
nikcleju@0 37 % Default = 1e-8.
nikcleju@0 38 %
nikcleju@0 39 % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
nikcleju@0 40 % if A is a matrix.
nikcleju@0 41 % Default = 200.
nikcleju@0 42 %
nikcleju@0 43 % Written by: Justin Romberg, Caltech
nikcleju@0 44 % Email: jrom@acm.caltech.edu
nikcleju@0 45 % Created: October 2005
nikcleju@0 46 %
nikcleju@0 47
nikcleju@0 48 function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
nikcleju@0 49
nikcleju@0 50 largescale = isa(A,'function_handle');
nikcleju@0 51
nikcleju@0 52 if (nargin < 6), lbtol = 1e-3; end
nikcleju@0 53 if (nargin < 7), mu = 10; end
nikcleju@0 54 if (nargin < 8), cgtol = 1e-8; end
nikcleju@0 55 if (nargin < 9), cgmaxiter = 200; end
nikcleju@0 56
nikcleju@0 57 newtontol = lbtol;
nikcleju@0 58 newtonmaxiter = 50;
nikcleju@0 59
nikcleju@0 60 N = length(x0);
nikcleju@0 61
nikcleju@0 62 % starting point --- make sure that it is feasible
nikcleju@0 63 if (largescale)
nikcleju@0 64 if (norm(A(x0)-b) > epsilon)
nikcleju@0 65 disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
nikcleju@0 66 AAt = @(z) A(At(z));
nikcleju@0 67 w = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
nikcleju@0 68 if (cgres > 1/2)
nikcleju@0 69 disp('A*At is ill-conditioned: cannot find starting point');
nikcleju@0 70 xp = x0;
nikcleju@0 71 return;
nikcleju@0 72 end
nikcleju@0 73 x0 = At(w);
nikcleju@0 74 end
nikcleju@0 75 else
nikcleju@0 76 if (norm(A*x0-b) > epsilon)
nikcleju@0 77 disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
nikcleju@0 78 opts.POSDEF = true; opts.SYM = true;
nikcleju@0 79 [w, hcond] = linsolve(A*A', b, opts);
nikcleju@0 80 if (hcond < 1e-14)
nikcleju@0 81 disp('A*At is ill-conditioned: cannot find starting point');
nikcleju@0 82 xp = x0;
nikcleju@0 83 return;
nikcleju@0 84 end
nikcleju@0 85 x0 = A'*w;
nikcleju@0 86 end
nikcleju@0 87 end
nikcleju@0 88 x = x0;
nikcleju@0 89 u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
nikcleju@0 90
nikcleju@0 91 disp(sprintf('Original l1 norm = %.3f, original functional = %.3f', sum(abs(x0)), sum(u)));
nikcleju@0 92
nikcleju@0 93 % choose initial value of tau so that the duality gap after the first
nikcleju@0 94 % step will be about the origial norm
nikcleju@0 95 tau = max((2*N+1)/sum(abs(x0)), 1);
nikcleju@0 96
nikcleju@0 97 lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu));
nikcleju@0 98 disp(sprintf('Number of log barrier iterations = %d\n', lbiter));
nikcleju@0 99
nikcleju@0 100 totaliter = 0;
nikcleju@0 101
nikcleju@0 102 % Added by Nic
nikcleju@0 103 if lbiter == 0
nikcleju@0 104 xp = zeros(size(x0));
nikcleju@0 105 end
nikcleju@0 106
nikcleju@0 107 for ii = 1:lbiter
nikcleju@0 108
nikcleju@0 109 [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter);
nikcleju@0 110 totaliter = totaliter + ntiter;
nikcleju@0 111
nikcleju@0 112 disp(sprintf('\nLog barrier iter = %d, l1 = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ...
nikcleju@0 113 ii, sum(abs(xp)), sum(up), tau, totaliter));
nikcleju@0 114
nikcleju@0 115 x = xp;
nikcleju@0 116 u = up;
nikcleju@0 117
nikcleju@0 118 tau = mu*tau;
nikcleju@0 119
nikcleju@0 120 end
nikcleju@0 121