nikcleju@0: % l1qc_logbarrier.m nikcleju@0: % nikcleju@0: % Solve quadratically constrained l1 minimization: nikcleju@0: % min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon nikcleju@0: % nikcleju@0: % Reformulate as the second-order cone program nikcleju@0: % min_{x,u} sum(u) s.t. x - u <= 0, nikcleju@0: % -x - u <= 0, nikcleju@0: % 1/2(||Ax-b||^2 - \epsilon^2) <= 0 nikcleju@0: % and use a log barrier algorithm. nikcleju@0: % nikcleju@0: % Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) nikcleju@0: % nikcleju@0: % x0 - Nx1 vector, initial point. nikcleju@0: % nikcleju@0: % A - Either a handle to a function that takes a N vector and returns a K nikcleju@0: % vector , or a KxN matrix. If A is a function handle, the algorithm nikcleju@0: % operates in "largescale" mode, solving the Newton systems via the nikcleju@0: % Conjugate Gradients algorithm. nikcleju@0: % nikcleju@0: % At - Handle to a function that takes a K vector and returns an N vector. nikcleju@0: % If A is a KxN matrix, At is ignored. nikcleju@0: % nikcleju@0: % b - Kx1 vector of observations. nikcleju@0: % nikcleju@0: % epsilon - scalar, constraint relaxation parameter nikcleju@0: % nikcleju@0: % lbtol - The log barrier algorithm terminates when the duality gap <= lbtol. nikcleju@0: % Also, the number of log barrier iterations is completely nikcleju@0: % determined by lbtol. nikcleju@0: % Default = 1e-3. nikcleju@0: % nikcleju@0: % mu - Factor by which to increase the barrier constant at each iteration. nikcleju@0: % Default = 10. nikcleju@0: % nikcleju@0: % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. nikcleju@0: % Default = 1e-8. nikcleju@0: % nikcleju@0: % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored nikcleju@0: % if A is a matrix. nikcleju@0: % Default = 200. nikcleju@0: % nikcleju@0: % Written by: Justin Romberg, Caltech nikcleju@0: % Email: jrom@acm.caltech.edu nikcleju@0: % Created: October 2005 nikcleju@0: % nikcleju@0: nikcleju@0: function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) nikcleju@0: nikcleju@0: largescale = isa(A,'function_handle'); nikcleju@0: nikcleju@0: if (nargin < 6), lbtol = 1e-3; end nikcleju@0: if (nargin < 7), mu = 10; end nikcleju@0: if (nargin < 8), cgtol = 1e-8; end nikcleju@0: if (nargin < 9), cgmaxiter = 200; end nikcleju@0: nikcleju@0: newtontol = lbtol; nikcleju@0: newtonmaxiter = 50; nikcleju@0: nikcleju@0: N = length(x0); nikcleju@0: nikcleju@0: % starting point --- make sure that it is feasible nikcleju@0: if (largescale) nikcleju@0: if (norm(A(x0)-b) > epsilon) nikcleju@0: disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); nikcleju@0: AAt = @(z) A(At(z)); nikcleju@0: w = cgsolve(AAt, b, cgtol, cgmaxiter, 0); nikcleju@0: if (cgres > 1/2) nikcleju@0: disp('A*At is ill-conditioned: cannot find starting point'); nikcleju@0: xp = x0; nikcleju@0: return; nikcleju@0: end nikcleju@0: x0 = At(w); nikcleju@0: end nikcleju@0: else nikcleju@0: if (norm(A*x0-b) > epsilon) nikcleju@0: disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); nikcleju@0: opts.POSDEF = true; opts.SYM = true; nikcleju@0: [w, hcond] = linsolve(A*A', b, opts); nikcleju@0: if (hcond < 1e-14) nikcleju@0: disp('A*At is ill-conditioned: cannot find starting point'); nikcleju@0: xp = x0; nikcleju@0: return; nikcleju@0: end nikcleju@0: x0 = A'*w; nikcleju@0: end nikcleju@0: end nikcleju@0: x = x0; nikcleju@0: u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); nikcleju@0: nikcleju@0: disp(sprintf('Original l1 norm = %.3f, original functional = %.3f', sum(abs(x0)), sum(u))); nikcleju@0: nikcleju@0: % choose initial value of tau so that the duality gap after the first nikcleju@0: % step will be about the origial norm nikcleju@0: tau = max((2*N+1)/sum(abs(x0)), 1); nikcleju@0: nikcleju@0: lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu)); nikcleju@0: disp(sprintf('Number of log barrier iterations = %d\n', lbiter)); nikcleju@0: nikcleju@0: totaliter = 0; nikcleju@0: nikcleju@0: % Added by Nic nikcleju@0: if lbiter == 0 nikcleju@0: xp = zeros(size(x0)); nikcleju@0: end nikcleju@0: nikcleju@0: for ii = 1:lbiter nikcleju@0: nikcleju@0: [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter); nikcleju@0: totaliter = totaliter + ntiter; nikcleju@0: nikcleju@0: disp(sprintf('\nLog barrier iter = %d, l1 = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ... nikcleju@0: ii, sum(abs(xp)), sum(up), tau, totaliter)); nikcleju@0: nikcleju@0: x = xp; nikcleju@0: u = up; nikcleju@0: nikcleju@0: tau = mu*tau; nikcleju@0: nikcleju@0: end nikcleju@0: