nikcleju@21
|
1 # -*- coding: utf-8 -*-
|
nikcleju@21
|
2 """
|
nikcleju@21
|
3 Created on Thu Oct 13 14:05:22 2011
|
nikcleju@21
|
4
|
nikcleju@21
|
5 @author: ncleju
|
nikcleju@21
|
6 """
|
nikcleju@21
|
7
|
nikcleju@52
|
8
|
nikcleju@27
|
9 import numpy
|
nikcleju@27
|
10 import numpy.linalg
|
nikcleju@21
|
11 import scipy as sp
|
nikcleju@52
|
12
|
nikcleju@21
|
13 import math
|
nikcleju@21
|
14
|
nikcleju@21
|
15
|
nikcleju@21
|
16 #function [xhat, arepr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params)
|
nikcleju@21
|
17 def ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params):
|
nikcleju@21
|
18
|
nikcleju@21
|
19 #
|
nikcleju@21
|
20 # This function aims to compute
|
nikcleju@21
|
21 # xhat = argmin || Omega(Lambdahat, :) * x ||_2 subject to || y - M*x ||_2 <= epsilon.
|
nikcleju@21
|
22 # arepr is the analysis representation corresponding to Lambdahat, i.e.,
|
nikcleju@21
|
23 # arepr = Omega(Lambdahat, :) * xhat.
|
nikcleju@21
|
24 # The function also returns the lagrange multiplier in the process used to compute xhat.
|
nikcleju@21
|
25 #
|
nikcleju@21
|
26 # Inputs:
|
nikcleju@21
|
27 # y : observation/measurements of an unknown vector x0. It is equal to M*x0 + noise.
|
nikcleju@21
|
28 # M : Measurement matrix
|
nikcleju@21
|
29 # MH : M', the conjugate transpose of M
|
nikcleju@21
|
30 # Omega : analysis operator
|
nikcleju@21
|
31 # OmegaH : Omega', the conjugate transpose of Omega. Also, synthesis operator.
|
nikcleju@21
|
32 # Lambdahat : an index set indicating some rows of Omega.
|
nikcleju@21
|
33 # xinit : initial estimate that will be used for the conjugate gradient algorithm.
|
nikcleju@21
|
34 # ilagmult : initial lagrange multiplier to be used in
|
nikcleju@21
|
35 # params : parameters
|
nikcleju@21
|
36 # params.noise_level : this corresponds to epsilon above.
|
nikcleju@21
|
37 # params.max_inner_iteration : `maximum' number of iterations in conjugate gradient method.
|
nikcleju@21
|
38 # params.l2_accurary : the l2 accuracy parameter used in conjugate gradient method
|
nikcleju@21
|
39 # params.l2solver : if the value is 'pseudoinverse', then direct matrix computation (not conjugate gradient method) is used. Otherwise, conjugate gradient method is used.
|
nikcleju@21
|
40 #
|
nikcleju@21
|
41
|
nikcleju@21
|
42 #d = length(xinit)
|
nikcleju@21
|
43 d = xinit.size
|
nikcleju@21
|
44 lagmultmax = 1e5;
|
nikcleju@21
|
45 lagmultmin = 1e-4;
|
nikcleju@21
|
46 lagmultfactor = 2.0;
|
nikcleju@21
|
47 accuracy_adjustment_exponent = 4/5.;
|
nikcleju@21
|
48 lagmult = max(min(ilagmult, lagmultmax), lagmultmin);
|
nikcleju@21
|
49 was_infeasible = 0;
|
nikcleju@21
|
50 was_feasible = 0;
|
nikcleju@21
|
51
|
nikcleju@21
|
52 #######################################################################
|
nikcleju@21
|
53 ## Computation done using direct matrix computation from matlab. (no conjugate gradient method.)
|
nikcleju@21
|
54 #######################################################################
|
nikcleju@21
|
55 #if strcmp(params.l2solver, 'pseudoinverse')
|
nikcleju@21
|
56 if params['l2solver'] == 'pseudoinverse':
|
nikcleju@21
|
57 #if strcmp(class(M), 'double') && strcmp(class(Omega), 'double')
|
nikcleju@21
|
58 if M.dtype == 'float64' and Omega.dtype == 'double':
|
nikcleju@21
|
59 while True:
|
nikcleju@21
|
60 alpha = math.sqrt(lagmult);
|
nikcleju@27
|
61 xhat = numpy.linalg.lstsq(numpy.concatenate((M, alpha*Omega[Lambdahat,:])), numpy.concatenate((y, numpy.zeros(Lambdahat.size))))[0]
|
nikcleju@27
|
62 temp = numpy.linalg.norm(y - numpy.dot(M,xhat), 2);
|
nikcleju@21
|
63 #disp(['fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult)]);
|
nikcleju@21
|
64 if temp <= params['noise_level']:
|
nikcleju@21
|
65 was_feasible = True;
|
nikcleju@21
|
66 if was_infeasible:
|
nikcleju@21
|
67 break;
|
nikcleju@21
|
68 else:
|
nikcleju@21
|
69 lagmult = lagmult*lagmultfactor;
|
nikcleju@21
|
70 elif temp > params['noise_level']:
|
nikcleju@21
|
71 was_infeasible = True;
|
nikcleju@21
|
72 if was_feasible:
|
nikcleju@21
|
73 xhat = xprev.copy();
|
nikcleju@21
|
74 break;
|
nikcleju@21
|
75 lagmult = lagmult/lagmultfactor;
|
nikcleju@21
|
76 if lagmult < lagmultmin or lagmult > lagmultmax:
|
nikcleju@21
|
77 break;
|
nikcleju@21
|
78 xprev = xhat.copy();
|
nikcleju@27
|
79 arepr = numpy.dot(Omega[Lambdahat, :], xhat);
|
nikcleju@21
|
80 return xhat,arepr,lagmult;
|
nikcleju@21
|
81
|
nikcleju@21
|
82
|
nikcleju@21
|
83 ########################################################################
|
nikcleju@21
|
84 ## Computation using conjugate gradient method.
|
nikcleju@21
|
85 ########################################################################
|
nikcleju@21
|
86 #if strcmp(class(MH),'function_handle')
|
nikcleju@21
|
87 if hasattr(MH, '__call__'):
|
nikcleju@21
|
88 b = MH(y);
|
nikcleju@21
|
89 else:
|
nikcleju@27
|
90 b = numpy.dot(MH, y);
|
nikcleju@21
|
91
|
nikcleju@27
|
92 norm_b = numpy.linalg.norm(b, 2);
|
nikcleju@21
|
93 xhat = xinit.copy();
|
nikcleju@21
|
94 xprev = xinit.copy();
|
nikcleju@21
|
95 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
|
nikcleju@21
|
96 direction = -residual;
|
nikcleju@21
|
97 iter = 0;
|
nikcleju@21
|
98
|
nikcleju@21
|
99 while iter < params.max_inner_iteration:
|
nikcleju@21
|
100 iter = iter + 1;
|
nikcleju@27
|
101 alpha = numpy.linalg.norm(residual,2)**2 / numpy.dot(direction.T, TheHermitianMatrix(direction, M, MH, Omega, OmegaH, Lambdahat, lagmult));
|
nikcleju@21
|
102 xhat = xhat + alpha*direction;
|
nikcleju@21
|
103 prev_residual = residual.copy();
|
nikcleju@21
|
104 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
|
nikcleju@27
|
105 beta = numpy.linalg.norm(residual,2)**2 / numpy.linalg.norm(prev_residual,2)**2;
|
nikcleju@21
|
106 direction = -residual + beta*direction;
|
nikcleju@21
|
107
|
nikcleju@27
|
108 if numpy.linalg.norm(residual,2)/norm_b < params['l2_accuracy']*(lagmult**(accuracy_adjustment_exponent)) or iter == params['max_inner_iteration']:
|
nikcleju@21
|
109 #if strcmp(class(M), 'function_handle')
|
nikcleju@21
|
110 if hasattr(M, '__call__'):
|
nikcleju@27
|
111 temp = numpy.linalg.norm(y-M(xhat), 2);
|
nikcleju@21
|
112 else:
|
nikcleju@27
|
113 temp = numpy.linalg.norm(y-numpy.dot(M,xhat), 2);
|
nikcleju@21
|
114
|
nikcleju@21
|
115 #if strcmp(class(Omega), 'function_handle')
|
nikcleju@21
|
116 if hasattr(Omega, '__call__'):
|
nikcleju@21
|
117 u = Omega(xhat);
|
nikcleju@27
|
118 u = math.sqrt(lagmult)*numpy.linalg.norm(u(Lambdahat), 2);
|
nikcleju@21
|
119 else:
|
nikcleju@27
|
120 u = math.sqrt(lagmult)*numpy.linalg.norm(Omega[Lambdahat,:]*xhat, 2);
|
nikcleju@21
|
121
|
nikcleju@21
|
122
|
nikcleju@21
|
123 #disp(['residual=', num2str(norm(residual,2)), ' norm_b=', num2str(norm_b), ' omegapart=', num2str(u), ' fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult), ' iter=', num2str(iter)]);
|
nikcleju@21
|
124
|
nikcleju@21
|
125 if temp <= params['noise_level']:
|
nikcleju@21
|
126 was_feasible = True;
|
nikcleju@21
|
127 if was_infeasible:
|
nikcleju@21
|
128 break;
|
nikcleju@21
|
129 else:
|
nikcleju@21
|
130 lagmult = lagmultfactor*lagmult;
|
nikcleju@21
|
131 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
|
nikcleju@21
|
132 direction = -residual;
|
nikcleju@21
|
133 iter = 0;
|
nikcleju@21
|
134 elif temp > params['noise_level']:
|
nikcleju@21
|
135 lagmult = lagmult/lagmultfactor;
|
nikcleju@21
|
136 if was_feasible:
|
nikcleju@21
|
137 xhat = xprev.copy();
|
nikcleju@21
|
138 break;
|
nikcleju@21
|
139 was_infeasible = True;
|
nikcleju@21
|
140 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
|
nikcleju@21
|
141 direction = -residual;
|
nikcleju@21
|
142 iter = 0;
|
nikcleju@21
|
143 if lagmult > lagmultmax or lagmult < lagmultmin:
|
nikcleju@21
|
144 break;
|
nikcleju@21
|
145 xprev = xhat.copy();
|
nikcleju@21
|
146 #elseif norm(xprev-xhat)/norm(xhat) < 1e-2
|
nikcleju@21
|
147 # disp(['rel_change=', num2str(norm(xprev-xhat)/norm(xhat))]);
|
nikcleju@21
|
148 # if strcmp(class(M), 'function_handle')
|
nikcleju@21
|
149 # temp = norm(y-M(xhat), 2);
|
nikcleju@21
|
150 # else
|
nikcleju@21
|
151 # temp = norm(y-M*xhat, 2);
|
nikcleju@21
|
152 # end
|
nikcleju@21
|
153 #
|
nikcleju@21
|
154 # if temp > 1.2*params.noise_level
|
nikcleju@21
|
155 # was_infeasible = 1;
|
nikcleju@21
|
156 # lagmult = lagmult/lagmultfactor;
|
nikcleju@21
|
157 # xprev = xhat;
|
nikcleju@21
|
158 # end
|
nikcleju@21
|
159
|
nikcleju@21
|
160 #disp(['fidelity_error=', num2str(temp)]);
|
nikcleju@21
|
161 print 'fidelity_error=',temp
|
nikcleju@21
|
162 #if iter == params['max_inner_iteration']:
|
nikcleju@21
|
163 #disp('max_inner_iteration reached. l2_accuracy not achieved.');
|
nikcleju@21
|
164
|
nikcleju@21
|
165 ##
|
nikcleju@21
|
166 # Compute analysis representation for xhat
|
nikcleju@21
|
167 ##
|
nikcleju@21
|
168 #if strcmp(class(Omega),'function_handle')
|
nikcleju@21
|
169 if hasattr(Omega, '__call__'):
|
nikcleju@21
|
170 temp = Omega(xhat);
|
nikcleju@21
|
171 arepr = temp(Lambdahat);
|
nikcleju@21
|
172 else: ## here Omega is assumed to be a matrix
|
nikcleju@27
|
173 arepr = numpy.dot(Omega[Lambdahat, :], xhat);
|
nikcleju@21
|
174
|
nikcleju@21
|
175 return xhat,arepr,lagmult
|
nikcleju@21
|
176
|
nikcleju@21
|
177
|
nikcleju@21
|
178 ##
|
nikcleju@21
|
179 # This function computes (M'*M + lm*Omega(L,:)'*Omega(L,:)) * x.
|
nikcleju@21
|
180 ##
|
nikcleju@21
|
181 #function w = TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm)
|
nikcleju@21
|
182 def TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm):
|
nikcleju@21
|
183 #if strcmp(class(M), 'function_handle')
|
nikcleju@21
|
184 if hasattr(M, '__call__'):
|
nikcleju@21
|
185 w = MH(M(x));
|
nikcleju@21
|
186 else: ## M and MH are matrices
|
nikcleju@27
|
187 w = numpy.dot(numpy.dot(MH, M), x);
|
nikcleju@21
|
188
|
nikcleju@21
|
189 if hasattr(Omega, '__call__'):
|
nikcleju@21
|
190 v = Omega(x);
|
nikcleju@27
|
191 vt = numpy.zeros(v.size);
|
nikcleju@21
|
192 vt[L] = v[L].copy();
|
nikcleju@21
|
193 w = w + lm*OmegaH(vt);
|
nikcleju@21
|
194 else: ## Omega is assumed to be a matrix and OmegaH is its conjugate transpose
|
nikcleju@27
|
195 w = w + lm*numpy.dot(numpy.dot(OmegaH[:, L],Omega[L, :]),x);
|
nikcleju@21
|
196
|
nikcleju@21
|
197 return w
|
nikcleju@21
|
198
|
nikcleju@21
|
199 def GAP(y, M, MH, Omega, OmegaH, params, xinit):
|
nikcleju@21
|
200 #function [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit)
|
nikcleju@21
|
201
|
nikcleju@21
|
202 ##
|
nikcleju@21
|
203 # [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, xinit)
|
nikcleju@21
|
204 #
|
nikcleju@21
|
205 # Greedy Analysis Pursuit Algorithm
|
nikcleju@21
|
206 # This aims to find an approximate (sometimes exact) solution of
|
nikcleju@21
|
207 # xhat = argmin || Omega * x ||_0 subject to || y - M * x ||_2 <= epsilon.
|
nikcleju@21
|
208 #
|
nikcleju@21
|
209 # Outputs:
|
nikcleju@21
|
210 # xhat : estimate of the target cosparse vector x0.
|
nikcleju@21
|
211 # Lambdahat : estimate of the cosupport of x0.
|
nikcleju@21
|
212 #
|
nikcleju@21
|
213 # Inputs:
|
nikcleju@21
|
214 # y : observation/measurement vector of a target cosparse solution x0,
|
nikcleju@21
|
215 # given by relation y = M * x0 + noise.
|
nikcleju@21
|
216 # M : measurement matrix. This should be given either as a matrix or as a function handle
|
nikcleju@21
|
217 # which implements linear transformation.
|
nikcleju@21
|
218 # MH : conjugate transpose of M.
|
nikcleju@21
|
219 # Omega : analysis operator. Like M, this should be given either as a matrix or as a function
|
nikcleju@21
|
220 # handle which implements linear transformation.
|
nikcleju@21
|
221 # OmegaH : conjugate transpose of OmegaH.
|
nikcleju@21
|
222 # params : parameters that govern the behavior of the algorithm (mostly).
|
nikcleju@21
|
223 # params.num_iteration : GAP performs this number of iterations.
|
nikcleju@21
|
224 # params.greedy_level : determines how many rows of Omega GAP eliminates at each iteration.
|
nikcleju@21
|
225 # if the value is < 1, then the rows to be eliminated are determined by
|
nikcleju@21
|
226 # j : |omega_j * xhat| > greedy_level * max_i |omega_i * xhat|.
|
nikcleju@21
|
227 # if the value is >= 1, then greedy_level is the number of rows to be
|
nikcleju@21
|
228 # eliminated at each iteration.
|
nikcleju@21
|
229 # params.stopping_coefficient_size : when the maximum analysis coefficient is smaller than
|
nikcleju@21
|
230 # this, GAP terminates.
|
nikcleju@21
|
231 # params.l2solver : legitimate values are 'pseudoinverse' or 'cg'. determines which method
|
nikcleju@21
|
232 # is used to compute
|
nikcleju@21
|
233 # argmin || Omega_Lambdahat * x ||_2 subject to || y - M * x ||_2 <= epsilon.
|
nikcleju@21
|
234 # params.l2_accuracy : when l2solver is 'cg', this determines how accurately the above
|
nikcleju@21
|
235 # problem is solved.
|
nikcleju@21
|
236 # params.noise_level : this corresponds to epsilon above.
|
nikcleju@21
|
237 # xinit : initial estimate of x0 that GAP will start with. can be zeros(d, 1).
|
nikcleju@21
|
238 #
|
nikcleju@21
|
239 # Examples:
|
nikcleju@21
|
240 #
|
nikcleju@21
|
241 # Not particularly interesting:
|
nikcleju@21
|
242 # >> d = 100; p = 110; m = 60;
|
nikcleju@21
|
243 # >> M = randn(m, d);
|
nikcleju@21
|
244 # >> Omega = randn(p, d);
|
nikcleju@21
|
245 # >> y = M * x0 + noise;
|
nikcleju@21
|
246 # >> params.num_iteration = 40;
|
nikcleju@21
|
247 # >> params.greedy_level = 0.9;
|
nikcleju@21
|
248 # >> params.stopping_coefficient_size = 1e-4;
|
nikcleju@21
|
249 # >> params.l2solver = 'pseudoinverse';
|
nikcleju@21
|
250 # >> [xhat, Lambdahat] = GAP(y, M, M', Omega, Omega', params, zeros(d, 1));
|
nikcleju@21
|
251 #
|
nikcleju@21
|
252 # Assuming that FourierSampling.m, FourierSamplingH.m, FDAnalysis.m, etc. exist:
|
nikcleju@21
|
253 # >> n = 128;
|
nikcleju@21
|
254 # >> M = @(t) FourierSampling(t, n);
|
nikcleju@21
|
255 # >> MH = @(u) FourierSamplingH(u, n);
|
nikcleju@21
|
256 # >> Omega = @(t) FDAnalysis(t, n);
|
nikcleju@21
|
257 # >> OmegaH = @(u) FDSynthesis(t, n);
|
nikcleju@21
|
258 # >> params.num_iteration = 1000;
|
nikcleju@21
|
259 # >> params.greedy_level = 50;
|
nikcleju@21
|
260 # >> params.stopping_coefficient_size = 1e-5;
|
nikcleju@21
|
261 # >> params.l2solver = 'cg'; # in fact, 'pseudoinverse' does not even make sense.
|
nikcleju@21
|
262 # >> [xhat, Lambdahat] = GAP(y, M, MH, Omega, OmegaH, params, zeros(d, 1));
|
nikcleju@21
|
263 #
|
nikcleju@21
|
264 # Above: FourierSampling and FourierSamplingH are conjugate transpose of each other.
|
nikcleju@21
|
265 # FDAnalysis and FDSynthesis are conjugate transpose of each other.
|
nikcleju@21
|
266 # These routines are problem specific and need to be implemented by the user.
|
nikcleju@21
|
267
|
nikcleju@21
|
268 #d = length(xinit(:));
|
nikcleju@21
|
269 d = xinit.size
|
nikcleju@21
|
270
|
nikcleju@21
|
271 #if strcmp(class(Omega), 'function_handle')
|
nikcleju@21
|
272 # p = length(Omega(zeros(d,1)));
|
nikcleju@21
|
273 #else ## Omega is a matrix
|
nikcleju@21
|
274 # p = size(Omega, 1);
|
nikcleju@21
|
275 #end
|
nikcleju@21
|
276 if hasattr(Omega, '__call__'):
|
nikcleju@27
|
277 p = Omega(numpy.zeros((d,1)))
|
nikcleju@21
|
278 else:
|
nikcleju@21
|
279 p = Omega.shape[0]
|
nikcleju@21
|
280
|
nikcleju@21
|
281
|
nikcleju@21
|
282 iter = 0
|
nikcleju@21
|
283 lagmult = 1e-4
|
nikcleju@21
|
284 #Lambdahat = 1:p;
|
nikcleju@27
|
285 Lambdahat = numpy.arange(p)
|
nikcleju@21
|
286 #while iter < params.num_iteration
|
nikcleju@21
|
287 while iter < params["num_iteration"]:
|
nikcleju@21
|
288 iter = iter + 1
|
nikcleju@21
|
289 #[xhat, analysis_repr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params);
|
nikcleju@21
|
290 xhat,analysis_repr,lagmult = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, lagmult, params)
|
nikcleju@21
|
291 #[to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, params.greedy_level);
|
nikcleju@27
|
292 to_be_removed,maxcoef = FindRowsToRemove(analysis_repr, params["greedy_level"])
|
nikcleju@21
|
293 #disp(['** maxcoef=', num2str(maxcoef), ' target=', num2str(params.stopping_coefficient_size), ' rows_remaining=', num2str(length(Lambdahat)), ' lagmult=', num2str(lagmult)]);
|
nikcleju@21
|
294 #print '** maxcoef=',maxcoef,' target=',params['stopping_coefficient_size'],' rows_remaining=',Lambdahat.size,' lagmult=',lagmult
|
nikcleju@21
|
295 if check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params):
|
nikcleju@21
|
296 break
|
nikcleju@21
|
297
|
nikcleju@21
|
298 xinit = xhat.copy()
|
nikcleju@21
|
299 #Lambdahat[to_be_removed] = []
|
nikcleju@27
|
300 Lambdahat = numpy.delete(Lambdahat.squeeze(),to_be_removed)
|
nikcleju@21
|
301
|
nikcleju@21
|
302 #n = sqrt(d);
|
nikcleju@21
|
303 #figure(9);
|
nikcleju@21
|
304 #RR = zeros(2*n, n-1);
|
nikcleju@21
|
305 #RR(Lambdahat) = 1;
|
nikcleju@21
|
306 #XD = ones(n, n);
|
nikcleju@21
|
307 #XD(:, 2:end) = XD(:, 2:end) .* RR(1:n, :);
|
nikcleju@21
|
308 #XD(:, 1:(end-1)) = XD(:, 1:(end-1)) .* RR(1:n, :);
|
nikcleju@21
|
309 #XD(2:end, :) = XD(2:end, :) .* RR((n+1):(2*n), :)';
|
nikcleju@21
|
310 #XD(1:(end-1), :) = XD(1:(end-1), :) .* RR((n+1):(2*n), :)';
|
nikcleju@21
|
311 #XD = FD2DiagnosisPlot(n, Lambdahat);
|
nikcleju@21
|
312 #imshow(XD);
|
nikcleju@21
|
313 #figure(10);
|
nikcleju@21
|
314 #imshow(reshape(real(xhat), n, n));
|
nikcleju@21
|
315
|
nikcleju@21
|
316 #return;
|
nikcleju@27
|
317 return xhat,Lambdahat
|
nikcleju@21
|
318
|
nikcleju@21
|
319 def FindRowsToRemove(analysis_repr, greedy_level):
|
nikcleju@21
|
320 #function [to_be_removed, maxcoef] = FindRowsToRemove(analysis_repr, greedy_level)
|
nikcleju@21
|
321
|
nikcleju@21
|
322 #abscoef = abs(analysis_repr(:));
|
nikcleju@27
|
323 abscoef = numpy.abs(analysis_repr)
|
nikcleju@21
|
324 #n = length(abscoef);
|
nikcleju@21
|
325 n = abscoef.size
|
nikcleju@21
|
326 #maxcoef = max(abscoef);
|
nikcleju@21
|
327 maxcoef = abscoef.max()
|
nikcleju@21
|
328 if greedy_level >= 1:
|
nikcleju@21
|
329 #qq = quantile(abscoef, 1.0-greedy_level/n);
|
nikcleju@21
|
330 qq = sp.stats.mstats.mquantile(abscoef, 1.0-greedy_level/n, 0.5, 0.5)
|
nikcleju@21
|
331 else:
|
nikcleju@21
|
332 qq = maxcoef*greedy_level
|
nikcleju@21
|
333
|
nikcleju@21
|
334 #to_be_removed = find(abscoef >= qq);
|
nikcleju@27
|
335 # [0] needed because nonzero() returns a tuple of arrays!
|
nikcleju@27
|
336 to_be_removed = numpy.nonzero(abscoef >= qq)[0]
|
nikcleju@21
|
337 #return;
|
nikcleju@27
|
338 return to_be_removed,maxcoef
|
nikcleju@21
|
339
|
nikcleju@21
|
340 def check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params):
|
nikcleju@21
|
341 #function r = check_stopping_criteria(xhat, xinit, maxcoef, lagmult, Lambdahat, params)
|
nikcleju@21
|
342
|
nikcleju@21
|
343 #if isfield(params, 'stopping_coefficient_size') && maxcoef < params.stopping_coefficient_size
|
nikcleju@21
|
344 if ('stopping_coefficient_size' in params) and maxcoef < params['stopping_coefficient_size']:
|
nikcleju@21
|
345 return 1
|
nikcleju@21
|
346
|
nikcleju@21
|
347 #if isfield(params, 'stopping_lagrange_multiplier_size') && lagmult > params.stopping_lagrange_multiplier_size
|
nikcleju@21
|
348 if ('stopping_lagrange_multiplier_size' in params) and lagmult > params['stopping_lagrange_multiplier_size']:
|
nikcleju@21
|
349 return 1
|
nikcleju@21
|
350
|
nikcleju@21
|
351 #if isfield(params, 'stopping_relative_solution_change') && norm(xhat-xinit)/norm(xhat) < params.stopping_relative_solution_change
|
nikcleju@27
|
352 if ('stopping_relative_solution_change' in params) and numpy.linalg.norm(xhat-xinit)/numpy.linalg.norm(xhat) < params['stopping_relative_solution_change']:
|
nikcleju@21
|
353 return 1
|
nikcleju@21
|
354
|
nikcleju@21
|
355 #if isfield(params, 'stopping_cosparsity') && length(Lambdahat) < params.stopping_cosparsity
|
nikcleju@21
|
356 if ('stopping_cosparsity' in params) and Lambdahat.size() < params['stopping_cosparsity']:
|
nikcleju@21
|
357 return 1
|
nikcleju@21
|
358
|
nikcleju@21
|
359 return 0 |