nikcleju@10
|
1 # -*- coding: utf-8 -*-
|
nikcleju@10
|
2 """
|
nikcleju@10
|
3 Created on Sat Nov 05 18:08:40 2011
|
nikcleju@10
|
4
|
nikcleju@10
|
5 @author: Nic
|
nikcleju@10
|
6 """
|
nikcleju@10
|
7
|
nikcleju@19
|
8 import numpy as np
|
nikcleju@22
|
9 import scipy.io
|
nikcleju@22
|
10 import math
|
nikcleju@29
|
11
|
nikcleju@10
|
12 import pyCSalgos
|
nikcleju@19
|
13 import pyCSalgos.GAP.GAP
|
nikcleju@19
|
14 import pyCSalgos.SL0.SL0_approx
|
nikcleju@30
|
15 import pyCSalgos.OMP.omp_QR
|
nikcleju@30
|
16 import pyCSalgos.RecomTST.RecommendedTST
|
nikcleju@10
|
17
|
nikcleju@29
|
18 #==========================
|
nikcleju@29
|
19 # Algorithm functions
|
nikcleju@29
|
20 #==========================
|
nikcleju@22
|
21 def run_gap(y,M,Omega,epsilon):
|
nikcleju@19
|
22 gapparams = {"num_iteration" : 1000,\
|
nikcleju@19
|
23 "greedy_level" : 0.9,\
|
nikcleju@19
|
24 "stopping_coefficient_size" : 1e-4,\
|
nikcleju@19
|
25 "l2solver" : 'pseudoinverse',\
|
nikcleju@19
|
26 "noise_level": epsilon}
|
nikcleju@22
|
27 return pyCSalgos.GAP.GAP.GAP(y,M,M.T,Omega,Omega.T,gapparams,np.zeros(Omega.shape[1]))[0]
|
nikcleju@29
|
28
|
nikcleju@22
|
29 def run_sl0(y,M,Omega,D,U,S,Vt,epsilon,lbd):
|
nikcleju@19
|
30
|
nikcleju@19
|
31 N,n = Omega.shape
|
nikcleju@22
|
32 #D = np.linalg.pinv(Omega)
|
nikcleju@22
|
33 #U,S,Vt = np.linalg.svd(D)
|
nikcleju@19
|
34 aggDupper = np.dot(M,D)
|
nikcleju@19
|
35 aggDlower = Vt[-(N-n):,:]
|
nikcleju@19
|
36 aggD = np.concatenate((aggDupper, lbd * aggDlower))
|
nikcleju@19
|
37 aggy = np.concatenate((y, np.zeros(N-n)))
|
nikcleju@19
|
38
|
nikcleju@22
|
39 sigmamin = 0.001
|
nikcleju@22
|
40 sigma_decrease_factor = 0.5
|
nikcleju@20
|
41 mu_0 = 2
|
nikcleju@20
|
42 L = 10
|
nikcleju@22
|
43 return pyCSalgos.SL0.SL0_approx.SL0_approx(aggD,aggy,epsilon,sigmamin,sigma_decrease_factor,mu_0,L)
|
nikcleju@10
|
44
|
nikcleju@27
|
45 def run_bp(y,M,Omega,D,U,S,Vt,epsilon,lbd):
|
nikcleju@27
|
46
|
nikcleju@27
|
47 N,n = Omega.shape
|
nikcleju@27
|
48 #D = np.linalg.pinv(Omega)
|
nikcleju@27
|
49 #U,S,Vt = np.linalg.svd(D)
|
nikcleju@27
|
50 aggDupper = np.dot(M,D)
|
nikcleju@27
|
51 aggDlower = Vt[-(N-n):,:]
|
nikcleju@27
|
52 aggD = np.concatenate((aggDupper, lbd * aggDlower))
|
nikcleju@27
|
53 aggy = np.concatenate((y, np.zeros(N-n)))
|
nikcleju@27
|
54
|
nikcleju@27
|
55 sigmamin = 0.001
|
nikcleju@27
|
56 sigma_decrease_factor = 0.5
|
nikcleju@27
|
57 mu_0 = 2
|
nikcleju@27
|
58 L = 10
|
nikcleju@27
|
59 return pyCSalgos.SL0.SL0_approx.SL0_approx(aggD,aggy,epsilon,sigmamin,sigma_decrease_factor,mu_0,L)
|
nikcleju@27
|
60
|
nikcleju@30
|
61 def run_ompeps(y,M,Omega,D,U,S,Vt,epsilon,lbd):
|
nikcleju@30
|
62
|
nikcleju@30
|
63 N,n = Omega.shape
|
nikcleju@30
|
64 #D = np.linalg.pinv(Omega)
|
nikcleju@30
|
65 #U,S,Vt = np.linalg.svd(D)
|
nikcleju@30
|
66 aggDupper = np.dot(M,D)
|
nikcleju@30
|
67 aggDlower = Vt[-(N-n):,:]
|
nikcleju@30
|
68 aggD = np.concatenate((aggDupper, lbd * aggDlower))
|
nikcleju@30
|
69 aggy = np.concatenate((y, np.zeros(N-n)))
|
nikcleju@30
|
70
|
nikcleju@30
|
71 opts = dict()
|
nikcleju@30
|
72 opts['stopCrit'] = 'mse'
|
nikcleju@30
|
73 opts['stopTol'] = epsilon**2 / aggy.size
|
nikcleju@30
|
74 return pyCSalgos.OMP.omp_QR.greed_omp_qr(aggy,aggD,aggD.shape[1],opts)[0]
|
nikcleju@30
|
75
|
nikcleju@30
|
76 def run_tst(y,M,Omega,D,U,S,Vt,epsilon,lbd):
|
nikcleju@30
|
77
|
nikcleju@30
|
78 N,n = Omega.shape
|
nikcleju@30
|
79 #D = np.linalg.pinv(Omega)
|
nikcleju@30
|
80 #U,S,Vt = np.linalg.svd(D)
|
nikcleju@30
|
81 aggDupper = np.dot(M,D)
|
nikcleju@30
|
82 aggDlower = Vt[-(N-n):,:]
|
nikcleju@30
|
83 aggD = np.concatenate((aggDupper, lbd * aggDlower))
|
nikcleju@30
|
84 aggy = np.concatenate((y, np.zeros(N-n)))
|
nikcleju@30
|
85
|
nikcleju@30
|
86 return pyCSalgos.RecomTST.RecommendedTST.RecommendedTST(aggD, aggy, nsweep=3000, tol=epsilon / np.linalg.norm(aggy))
|
nikcleju@30
|
87
|
nikcleju@29
|
88 #==========================
|
nikcleju@29
|
89 # Define tuples (algorithm function, name)
|
nikcleju@29
|
90 #==========================
|
nikcleju@22
|
91 gap = (run_gap, 'GAP')
|
nikcleju@30
|
92 sl0 = (run_sl0, 'SL0a')
|
nikcleju@29
|
93 bp = (run_bp, 'BP')
|
nikcleju@30
|
94 ompeps = (run_ompeps, 'OMPeps')
|
nikcleju@30
|
95 tst = (run_tst, 'TST')
|
nikcleju@10
|
96
|
nikcleju@22
|
97 # Define which algorithms to run
|
nikcleju@22
|
98 # 1. Algorithms not depending on lambda
|
nikcleju@22
|
99 algosN = gap, # tuple
|
nikcleju@22
|
100 # 2. Algorithms depending on lambda (our ABS approach)
|
nikcleju@30
|
101 algosL = sl0,bp,ompeps,tst # tuple
|
nikcleju@29
|
102
|
nikcleju@29
|
103 #==========================
|
nikcleju@29
|
104 # Interface functions
|
nikcleju@29
|
105 #==========================
|
nikcleju@29
|
106 def run_multiproc(ncpus=None):
|
nikcleju@30
|
107 d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata,savedataname,doshowplot,dosaveplot,saveplotbase,saveplotexts = standard_params()
|
nikcleju@29
|
108 run_multi(algosN, algosL, d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata=dosavedata,savedataname=savedataname,\
|
nikcleju@30
|
109 doparallel=True, ncpus=ncpus,\
|
nikcleju@30
|
110 doshowplot=doshowplot,dosaveplot=dosaveplot,saveplotbase=saveplotbase,saveplotexts=saveplotexts)
|
nikcleju@22
|
111
|
nikcleju@29
|
112 def run():
|
nikcleju@30
|
113 d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata,savedataname,doshowplot,dosaveplot,saveplotbase,saveplotexts = standard_params()
|
nikcleju@29
|
114 run_multi(algosN, algosL, d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata=dosavedata,savedataname=savedataname,\
|
nikcleju@30
|
115 doparallel=False,\
|
nikcleju@30
|
116 doshowplot=doshowplot,dosaveplot=dosaveplot,saveplotbase=saveplotbase,saveplotexts=saveplotexts)
|
nikcleju@19
|
117
|
nikcleju@29
|
118 def standard_params():
|
nikcleju@29
|
119 #Set up standard experiment parameters
|
nikcleju@25
|
120 d = 50.0;
|
nikcleju@22
|
121 sigma = 2.0
|
nikcleju@27
|
122 #deltas = np.arange(0.05,1.,0.05)
|
nikcleju@27
|
123 #rhos = np.arange(0.05,1.,0.05)
|
nikcleju@30
|
124 #deltas = np.array([0.05, 0.45, 0.95])
|
nikcleju@30
|
125 #rhos = np.array([0.05, 0.45, 0.95])
|
nikcleju@30
|
126 deltas = np.array([0.05])
|
nikcleju@30
|
127 rhos = np.array([0.05])
|
nikcleju@22
|
128 #delta = 0.8;
|
nikcleju@22
|
129 #rho = 0.15;
|
nikcleju@27
|
130 numvects = 100; # Number of vectors to generate
|
nikcleju@20
|
131 SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy
|
nikcleju@22
|
132 # Values for lambda
|
nikcleju@22
|
133 #lambdas = [0 10.^linspace(-5, 4, 10)];
|
nikcleju@25
|
134 #lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10)))
|
nikcleju@25
|
135 lambdas = np.array([0., 0.0001, 0.01, 1, 100, 10000])
|
nikcleju@29
|
136
|
nikcleju@29
|
137 dosavedata = True
|
nikcleju@30
|
138 savedataname = 'approx_pt_std1.mat'
|
nikcleju@30
|
139
|
nikcleju@30
|
140 doshowplot = False
|
nikcleju@30
|
141 dosaveplot = True
|
nikcleju@30
|
142 saveplotbase = 'approx_pt_std1_'
|
nikcleju@30
|
143 saveplotexts = ('png','pdf','eps')
|
nikcleju@29
|
144
|
nikcleju@29
|
145
|
nikcleju@30
|
146 return d,sigma,deltas,rhos,lambdas,numvects,SNRdb,dosavedata,savedataname,\
|
nikcleju@30
|
147 doshowplot,dosaveplot,saveplotbase,saveplotexts
|
nikcleju@29
|
148
|
nikcleju@29
|
149 #==========================
|
nikcleju@29
|
150 # Main functions
|
nikcleju@29
|
151 #==========================
|
nikcleju@29
|
152 def run_multi(algosN, algosL, d, sigma, deltas, rhos, lambdas, numvects, SNRdb,
|
nikcleju@29
|
153 doparallel=False, ncpus=None,\
|
nikcleju@29
|
154 doshowplot=False, dosaveplot=False, saveplotbase=None, saveplotexts=None,\
|
nikcleju@29
|
155 dosavedata=False, savedataname=None):
|
nikcleju@30
|
156
|
nikcleju@30
|
157 print "This is analysis recovery ABS approximation script by Nic"
|
nikcleju@30
|
158 print "Running phase transition ( run_multi() )"
|
nikcleju@29
|
159
|
nikcleju@29
|
160 if doparallel:
|
nikcleju@29
|
161 from multiprocessing import Pool
|
nikcleju@29
|
162
|
nikcleju@30
|
163 if dosaveplot or doshowplot:
|
nikcleju@30
|
164 try:
|
nikcleju@30
|
165 import matplotlib
|
nikcleju@30
|
166 if doshowplot:
|
nikcleju@30
|
167 print "Importing matplotlib with default (GUI) backend... ",
|
nikcleju@30
|
168 else:
|
nikcleju@30
|
169 print "Importing matplotlib with \"Cairo\" backend... ",
|
nikcleju@30
|
170 matplotlib.use('Cairo')
|
nikcleju@30
|
171 import matplotlib.pyplot as plt
|
nikcleju@30
|
172 import matplotlib.cm as cm
|
nikcleju@30
|
173 print "OK"
|
nikcleju@30
|
174 except:
|
nikcleju@30
|
175 print "FAIL"
|
nikcleju@30
|
176 print "Importing matplotlib.pyplot failed. No figures at all"
|
nikcleju@30
|
177 print "Try selecting a different backend"
|
nikcleju@30
|
178 doshowplot = False
|
nikcleju@30
|
179 dosaveplot = False
|
nikcleju@30
|
180
|
nikcleju@30
|
181 # Print summary of parameters
|
nikcleju@30
|
182 print "Parameters:"
|
nikcleju@30
|
183 if doparallel:
|
nikcleju@30
|
184 if ncpus is None:
|
nikcleju@30
|
185 print " Running in parallel with default threads using \"multiprocessing\" package"
|
nikcleju@30
|
186 else:
|
nikcleju@30
|
187 print " Running in parallel with",ncpus,"threads using \"multiprocessing\" package"
|
nikcleju@30
|
188 else:
|
nikcleju@30
|
189 print "Running single thread"
|
nikcleju@30
|
190 if doshowplot:
|
nikcleju@30
|
191 print " Showing figures"
|
nikcleju@30
|
192 else:
|
nikcleju@30
|
193 print " Not showing figures"
|
nikcleju@30
|
194 if dosaveplot:
|
nikcleju@30
|
195 print " Saving figures as "+saveplotbase+"* with extensions ",saveplotexts
|
nikcleju@30
|
196 else:
|
nikcleju@30
|
197 print " Not saving figures"
|
nikcleju@30
|
198 print " Running algorithms",[algotuple[1] for algotuple in algosN],[algotuple[1] for algotuple in algosL]
|
nikcleju@29
|
199
|
nikcleju@29
|
200 nalgosN = len(algosN)
|
nikcleju@29
|
201 nalgosL = len(algosL)
|
nikcleju@29
|
202
|
nikcleju@22
|
203 meanmatrix = dict()
|
nikcleju@22
|
204 for i,algo in zip(np.arange(nalgosN),algosN):
|
nikcleju@22
|
205 meanmatrix[algo[1]] = np.zeros((rhos.size, deltas.size))
|
nikcleju@22
|
206 for i,algo in zip(np.arange(nalgosL),algosL):
|
nikcleju@22
|
207 meanmatrix[algo[1]] = np.zeros((lambdas.size, rhos.size, deltas.size))
|
nikcleju@22
|
208
|
nikcleju@29
|
209 # Prepare parameters
|
nikcleju@29
|
210 jobparams = []
|
nikcleju@30
|
211 print " (delta, rho) pairs to be run:"
|
nikcleju@22
|
212 for idelta,delta in zip(np.arange(deltas.size),deltas):
|
nikcleju@22
|
213 for irho,rho in zip(np.arange(rhos.size),rhos):
|
nikcleju@22
|
214
|
nikcleju@22
|
215 # Generate data and operator
|
nikcleju@29
|
216 Omega,x0,y,M,realnoise = generateData(d,sigma,delta,rho,numvects,SNRdb)
|
nikcleju@22
|
217
|
nikcleju@29
|
218 #Save the parameters, and run after
|
nikcleju@30
|
219 print " delta = ",delta," rho = ",rho
|
nikcleju@29
|
220 jobparams.append((algosN,algosL, Omega,y,lambdas,realnoise,M,x0))
|
nikcleju@29
|
221
|
nikcleju@30
|
222 print "End of parameters"
|
nikcleju@30
|
223
|
nikcleju@29
|
224 # Run
|
nikcleju@29
|
225 jobresults = []
|
nikcleju@29
|
226 if doparallel:
|
nikcleju@29
|
227 pool = Pool(4)
|
nikcleju@29
|
228 jobresults = pool.map(run_once_tuple,jobparams)
|
nikcleju@29
|
229 else:
|
nikcleju@29
|
230 for jobparam in jobparams:
|
nikcleju@29
|
231 jobresults.append(run_once(algosN,algosL,Omega,y,lambdas,realnoise,M,x0))
|
nikcleju@29
|
232
|
nikcleju@29
|
233 # Read results
|
nikcleju@29
|
234 idx = 0
|
nikcleju@29
|
235 for idelta,delta in zip(np.arange(deltas.size),deltas):
|
nikcleju@29
|
236 for irho,rho in zip(np.arange(rhos.size),rhos):
|
nikcleju@29
|
237 mrelerrN,mrelerrL = jobresults[idx]
|
nikcleju@29
|
238 idx = idx+1
|
nikcleju@22
|
239 for algotuple in algosN:
|
nikcleju@22
|
240 meanmatrix[algotuple[1]][irho,idelta] = 1 - mrelerrN[algotuple[1]]
|
nikcleju@22
|
241 if meanmatrix[algotuple[1]][irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][irho,idelta]):
|
nikcleju@22
|
242 meanmatrix[algotuple[1]][irho,idelta] = 0
|
nikcleju@22
|
243 for algotuple in algosL:
|
nikcleju@22
|
244 for ilbd in np.arange(lambdas.size):
|
nikcleju@22
|
245 meanmatrix[algotuple[1]][ilbd,irho,idelta] = 1 - mrelerrL[algotuple[1]][ilbd]
|
nikcleju@22
|
246 if meanmatrix[algotuple[1]][ilbd,irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][ilbd,irho,idelta]):
|
nikcleju@22
|
247 meanmatrix[algotuple[1]][ilbd,irho,idelta] = 0
|
nikcleju@22
|
248
|
nikcleju@22
|
249 # # Prepare matrices to show
|
nikcleju@22
|
250 # showmats = dict()
|
nikcleju@22
|
251 # for i,algo in zip(np.arange(nalgosN),algosN):
|
nikcleju@22
|
252 # showmats[algo[1]] = np.zeros(rhos.size, deltas.size)
|
nikcleju@22
|
253 # for i,algo in zip(np.arange(nalgosL),algosL):
|
nikcleju@22
|
254 # showmats[algo[1]] = np.zeros(lambdas.size, rhos.size, deltas.size)
|
nikcleju@22
|
255
|
nikcleju@22
|
256 # Save
|
nikcleju@29
|
257 if dosavedata:
|
nikcleju@29
|
258 tosave = dict()
|
nikcleju@29
|
259 tosave['meanmatrix'] = meanmatrix
|
nikcleju@29
|
260 tosave['d'] = d
|
nikcleju@29
|
261 tosave['sigma'] = sigma
|
nikcleju@29
|
262 tosave['deltas'] = deltas
|
nikcleju@29
|
263 tosave['rhos'] = rhos
|
nikcleju@29
|
264 tosave['numvects'] = numvects
|
nikcleju@29
|
265 tosave['SNRdb'] = SNRdb
|
nikcleju@29
|
266 tosave['lambdas'] = lambdas
|
nikcleju@29
|
267 try:
|
nikcleju@29
|
268 scipy.io.savemat(savedataname, tosave)
|
nikcleju@29
|
269 except:
|
nikcleju@29
|
270 print "Save error"
|
nikcleju@22
|
271 # Show
|
nikcleju@29
|
272 if doshowplot or dosaveplot:
|
nikcleju@27
|
273 for algotuple in algosN:
|
nikcleju@29
|
274 algoname = algotuple[1]
|
nikcleju@27
|
275 plt.figure()
|
nikcleju@29
|
276 plt.imshow(meanmatrix[algoname], cmap=cm.gray, interpolation='nearest',origin='lower')
|
nikcleju@29
|
277 if dosaveplot:
|
nikcleju@29
|
278 for ext in saveplotexts:
|
nikcleju@29
|
279 plt.savefig(saveplotbase + algoname + '.' + ext)
|
nikcleju@27
|
280 for algotuple in algosL:
|
nikcleju@29
|
281 algoname = algotuple[1]
|
nikcleju@27
|
282 for ilbd in np.arange(lambdas.size):
|
nikcleju@27
|
283 plt.figure()
|
nikcleju@29
|
284 plt.imshow(meanmatrix[algoname][ilbd], cmap=cm.gray, interpolation='nearest',origin='lower')
|
nikcleju@29
|
285 if dosaveplot:
|
nikcleju@29
|
286 for ext in saveplotexts:
|
nikcleju@30
|
287 plt.savefig(saveplotbase + algoname + ('_lbd%.0e' % lambdas[ilbd]) + '.' + ext)
|
nikcleju@29
|
288 if doshowplot:
|
nikcleju@29
|
289 plt.show()
|
nikcleju@29
|
290
|
nikcleju@22
|
291 print "Finished."
|
nikcleju@22
|
292
|
nikcleju@29
|
293 def run_once_tuple(t):
|
nikcleju@29
|
294 return run_once(*t)
|
nikcleju@10
|
295
|
nikcleju@29
|
296 def run_once(algosN,algosL,Omega,y,lambdas,realnoise,M,x0):
|
nikcleju@22
|
297
|
nikcleju@22
|
298 d = Omega.shape[1]
|
nikcleju@22
|
299
|
nikcleju@22
|
300 nalgosN = len(algosN)
|
nikcleju@22
|
301 nalgosL = len(algosL)
|
nikcleju@10
|
302
|
nikcleju@19
|
303 xrec = dict()
|
nikcleju@19
|
304 err = dict()
|
nikcleju@19
|
305 relerr = dict()
|
nikcleju@22
|
306
|
nikcleju@22
|
307 # Prepare storage variables for algorithms non-Lambda
|
nikcleju@22
|
308 for i,algo in zip(np.arange(nalgosN),algosN):
|
nikcleju@22
|
309 xrec[algo[1]] = np.zeros((d, y.shape[1]))
|
nikcleju@22
|
310 err[algo[1]] = np.zeros(y.shape[1])
|
nikcleju@22
|
311 relerr[algo[1]] = np.zeros(y.shape[1])
|
nikcleju@22
|
312 # Prepare storage variables for algorithms with Lambda
|
nikcleju@22
|
313 for i,algo in zip(np.arange(nalgosL),algosL):
|
nikcleju@22
|
314 xrec[algo[1]] = np.zeros((lambdas.size, d, y.shape[1]))
|
nikcleju@22
|
315 err[algo[1]] = np.zeros((lambdas.size, y.shape[1]))
|
nikcleju@22
|
316 relerr[algo[1]] = np.zeros((lambdas.size, y.shape[1]))
|
nikcleju@19
|
317
|
nikcleju@22
|
318 # Run algorithms non-Lambda
|
nikcleju@22
|
319 for iy in np.arange(y.shape[1]):
|
nikcleju@22
|
320 for algofunc,strname in algosN:
|
nikcleju@22
|
321 epsilon = 1.1 * np.linalg.norm(realnoise[:,iy])
|
nikcleju@22
|
322 xrec[strname][:,iy] = algofunc(y[:,iy],M,Omega,epsilon)
|
nikcleju@22
|
323 err[strname][iy] = np.linalg.norm(x0[:,iy] - xrec[strname][:,iy])
|
nikcleju@22
|
324 relerr[strname][iy] = err[strname][iy] / np.linalg.norm(x0[:,iy])
|
nikcleju@22
|
325 for algotuple in algosN:
|
nikcleju@22
|
326 print algotuple[1],' : avg relative error = ',np.mean(relerr[strname])
|
nikcleju@22
|
327
|
nikcleju@22
|
328 # Run algorithms with Lambda
|
nikcleju@19
|
329 for ilbd,lbd in zip(np.arange(lambdas.size),lambdas):
|
nikcleju@19
|
330 for iy in np.arange(y.shape[1]):
|
nikcleju@22
|
331 D = np.linalg.pinv(Omega)
|
nikcleju@22
|
332 U,S,Vt = np.linalg.svd(D)
|
nikcleju@22
|
333 for algofunc,strname in algosL:
|
nikcleju@19
|
334 epsilon = 1.1 * np.linalg.norm(realnoise[:,iy])
|
nikcleju@22
|
335 gamma = algofunc(y[:,iy],M,Omega,D,U,S,Vt,epsilon,lbd)
|
nikcleju@22
|
336 xrec[strname][ilbd,:,iy] = np.dot(D,gamma)
|
nikcleju@19
|
337 err[strname][ilbd,iy] = np.linalg.norm(x0[:,iy] - xrec[strname][ilbd,:,iy])
|
nikcleju@19
|
338 relerr[strname][ilbd,iy] = err[strname][ilbd,iy] / np.linalg.norm(x0[:,iy])
|
nikcleju@19
|
339 print 'Lambda = ',lbd,' :'
|
nikcleju@22
|
340 for algotuple in algosL:
|
nikcleju@22
|
341 print ' ',algotuple[1],' : avg relative error = ',np.mean(relerr[strname][ilbd,:])
|
nikcleju@10
|
342
|
nikcleju@22
|
343 # Prepare results
|
nikcleju@22
|
344 mrelerrN = dict()
|
nikcleju@22
|
345 for algotuple in algosN:
|
nikcleju@22
|
346 mrelerrN[algotuple[1]] = np.mean(relerr[algotuple[1]])
|
nikcleju@22
|
347 mrelerrL = dict()
|
nikcleju@22
|
348 for algotuple in algosL:
|
nikcleju@22
|
349 mrelerrL[algotuple[1]] = np.mean(relerr[algotuple[1]],1)
|
nikcleju@22
|
350
|
nikcleju@22
|
351 return mrelerrN,mrelerrL
|
nikcleju@29
|
352
|
nikcleju@29
|
353 def generateData(d,sigma,delta,rho,numvects,SNRdb):
|
nikcleju@29
|
354
|
nikcleju@29
|
355 # Process parameters
|
nikcleju@29
|
356 noiselevel = 1.0 / (10.0**(SNRdb/10.0));
|
nikcleju@29
|
357 p = round(sigma*d);
|
nikcleju@29
|
358 m = round(delta*d);
|
nikcleju@29
|
359 l = round(d - rho*m);
|
nikcleju@29
|
360
|
nikcleju@29
|
361 # Generate Omega and data based on parameters
|
nikcleju@29
|
362 Omega = pyCSalgos.GAP.GAP.Generate_Analysis_Operator(d, p);
|
nikcleju@29
|
363 # Optionally make Omega more coherent
|
nikcleju@29
|
364 U,S,Vt = np.linalg.svd(Omega);
|
nikcleju@29
|
365 Sdnew = S * (1+np.arange(S.size)) # Make D coherent, not Omega!
|
nikcleju@29
|
366 Snew = np.vstack((np.diag(Sdnew), np.zeros((Omega.shape[0] - Omega.shape[1], Omega.shape[1]))))
|
nikcleju@29
|
367 Omega = np.dot(U , np.dot(Snew,Vt))
|
nikcleju@29
|
368
|
nikcleju@29
|
369 # Generate data
|
nikcleju@29
|
370 x0,y,M,Lambda,realnoise = pyCSalgos.GAP.GAP.Generate_Data_Known_Omega(Omega, d,p,m,l,noiselevel, numvects,'l0');
|
nikcleju@29
|
371
|
nikcleju@29
|
372 return Omega,x0,y,M,realnoise
|
nikcleju@22
|
373
|
nikcleju@19
|
374 # Script main
|
nikcleju@19
|
375 if __name__ == "__main__":
|
nikcleju@27
|
376 #import cProfile
|
nikcleju@27
|
377 #cProfile.run('mainrun()', 'profile')
|
nikcleju@29
|
378 run()
|