Mercurial > hg > pmhd
view extra/harmonicmodel.m @ 13:844d341cf643 tip
Back up before ISMIR
author | Yading Song <yading.song@eecs.qmul.ac.uk> |
---|---|
date | Thu, 31 Oct 2013 13:17:06 +0000 |
parents | 6840f77b83aa |
children |
line wrap: on
line source
function y = harmonicmodel(x, fs, w, N, t, nH, minf0, maxf0, f0et, maxhd) % Analysis/synthesis of a sound using the sinusoidal harmonic model % x: input sound, fs: sampling rate, w: analysis window (odd size), % N: FFT size (minimum 512), t: threshold in negative dB, % nH: maximum number of harmonics, minf0: minimum f0 frequency in Hz, % maxf0: maximim f0 frequency in Hz, % f0et: error threshold in the f0 detection (ex: 5), % maxhd: max. relative deviation in harmonic detection (ex: .2) % y: output sound M = length(w); % analysis window size Ns= 1024; % FFT size for synthesis H = 256; % hop size for analysis and synthesis N2 = N/2+1; % size postive spectrum soundlength = length(x); % length of input sound array hNs = Ns/2; % half synthesis window size hM = (M-1)/2; % half analysis window size pin = max(hNs+1,1+hM); % initialize sound pointer to middle of analysis window pend = soundlength-hM; % last sample to start a frame fftbuffer = zeros(N,1); % initialize buffer for FFT y = zeros(soundlength+Ns/2,1); % output sound w = w/sum(w); % normalize analysis window sw = zeros(Ns,1); ow = triang(2*H-1); % overlapping window ovidx = Ns/2+1-H+1:Ns/2+H; % overlap indexes sw(ovidx) = ow(1:2*H-1); bh = blackmanharris(Ns); % synthesis window bh = bh ./ sum(bh); % normalize synthesis window sw(ovidx) = sw(ovidx) ./ bh(ovidx); while pin<pend %-----analysis-----% xw = x(pin-hM:pin+hM).*w(1:M); % window the input sound fftbuffer(:) = 0; % reset buffer fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase window in fftbuffer fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2); X = fft(fftbuffer); % compute the FFT mX = 20*log10(abs(X(1:N2))); % magnitude spectrum pX = unwrap(angle(X(1:N/2+1))); % unwrapped phase spectrum ploc = 1 + find((mX(2:N2-1)>t) .* (mX(2:N2-1)>mX(3:N2)) ... .* (mX(2:N2-1)>mX(1:N2-2))); % find peaks [ploc,pmag,pphase] = peakinterp(mX,pX,ploc); % refine peak values f0 = f0detection(mX,fs,ploc,pmag,f0et,minf0,maxf0); % find f0 hloc = zeros(nH,1); % initialize harmonic locations hmag = zeros(nH,1)-100; % initialize harmonic magnitudes hphase = zeros(nH,1); % initialize harmonic phases hf = (f0>0).*(f0.*(1:nH)); % initialize harmonic frequencies hi = 1; % initialize harmonic index npeaks = length(ploc); % number of peaks found while (f0>0 && hi<=nH && hf(hi)<fs/2) % find harmonic peaks [dev,pei] = min(abs((ploc(1:npeaks)-1)/N*fs-hf(hi))); % closest peak if ((hi==1 || ~any(hloc(1:hi-1)==ploc(pei))) && dev<maxhd*hf(hi)) hloc(hi) = ploc(pei); % harmonic locations hmag(hi) = pmag(pei); % harmonic magnitudes hphase(hi) = pphase(pei); % harmonic phases end hi = hi+1; %increase harmonic index end hloc(1:hi-1) = (hloc(1:hi-1)~=0).*((hloc(1:hi-1)-1)*Ns/N+1); % synth. locs %-----synthesis-----% Yh = genspecsines(hloc(1:hi-1),hmag,hphase,Ns); % generate sines yh = fftshift(real(ifft(Yh))); % sines in time domain y(pin-hNs:pin+hNs-1) = y(pin-hNs:pin+hNs-1) + sw.*yh(1:Ns); % overlap-add pin = pin+H; % advance the input sound pointer end