yading@10
|
1 function y = harmonicmodel(x, fs, w, N, t, nH, minf0, maxf0, f0et, maxhd)
|
yading@10
|
2 % Analysis/synthesis of a sound using the sinusoidal harmonic model
|
yading@10
|
3 % x: input sound, fs: sampling rate, w: analysis window (odd size),
|
yading@10
|
4 % N: FFT size (minimum 512), t: threshold in negative dB,
|
yading@10
|
5 % nH: maximum number of harmonics, minf0: minimum f0 frequency in Hz,
|
yading@10
|
6 % maxf0: maximim f0 frequency in Hz,
|
yading@10
|
7 % f0et: error threshold in the f0 detection (ex: 5), % maxhd: max. relative deviation in harmonic detection (ex: .2)
|
yading@10
|
8 % y: output sound
|
yading@10
|
9 M = length(w); % analysis window size
|
yading@10
|
10 Ns= 1024; % FFT size for synthesis
|
yading@10
|
11 H = 256; % hop size for analysis and synthesis
|
yading@10
|
12 N2 = N/2+1; % size postive spectrum
|
yading@10
|
13 soundlength = length(x); % length of input sound array
|
yading@10
|
14 hNs = Ns/2; % half synthesis window size
|
yading@10
|
15 hM = (M-1)/2; % half analysis window size
|
yading@10
|
16 pin = max(hNs+1,1+hM); % initialize sound pointer to middle of analysis window
|
yading@10
|
17 pend = soundlength-hM; % last sample to start a frame
|
yading@10
|
18 fftbuffer = zeros(N,1); % initialize buffer for FFT
|
yading@10
|
19 y = zeros(soundlength+Ns/2,1); % output sound
|
yading@10
|
20 w = w/sum(w); % normalize analysis window
|
yading@10
|
21 sw = zeros(Ns,1);
|
yading@10
|
22 ow = triang(2*H-1); % overlapping window
|
yading@10
|
23 ovidx = Ns/2+1-H+1:Ns/2+H; % overlap indexes
|
yading@10
|
24 sw(ovidx) = ow(1:2*H-1);
|
yading@10
|
25 bh = blackmanharris(Ns); % synthesis window
|
yading@10
|
26 bh = bh ./ sum(bh); % normalize synthesis window
|
yading@10
|
27 sw(ovidx) = sw(ovidx) ./ bh(ovidx);
|
yading@10
|
28 while pin<pend
|
yading@10
|
29 %-----analysis-----%
|
yading@10
|
30 xw = x(pin-hM:pin+hM).*w(1:M); % window the input sound
|
yading@10
|
31 fftbuffer(:) = 0; % reset buffer
|
yading@10
|
32 fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase window in fftbuffer
|
yading@10
|
33 fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2);
|
yading@10
|
34 X = fft(fftbuffer); % compute the FFT
|
yading@10
|
35 mX = 20*log10(abs(X(1:N2))); % magnitude spectrum
|
yading@10
|
36 pX = unwrap(angle(X(1:N/2+1))); % unwrapped phase spectrum
|
yading@10
|
37 ploc = 1 + find((mX(2:N2-1)>t) .* (mX(2:N2-1)>mX(3:N2)) ...
|
yading@10
|
38 .* (mX(2:N2-1)>mX(1:N2-2))); % find peaks
|
yading@10
|
39 [ploc,pmag,pphase] = peakinterp(mX,pX,ploc); % refine peak values
|
yading@10
|
40 f0 = f0detection(mX,fs,ploc,pmag,f0et,minf0,maxf0); % find f0
|
yading@10
|
41 hloc = zeros(nH,1); % initialize harmonic locations
|
yading@10
|
42 hmag = zeros(nH,1)-100; % initialize harmonic magnitudes
|
yading@10
|
43 hphase = zeros(nH,1); % initialize harmonic phases
|
yading@10
|
44 hf = (f0>0).*(f0.*(1:nH)); % initialize harmonic frequencies
|
yading@10
|
45 hi = 1; % initialize harmonic index
|
yading@10
|
46 npeaks = length(ploc); % number of peaks found
|
yading@10
|
47 while (f0>0 && hi<=nH && hf(hi)<fs/2) % find harmonic peaks
|
yading@10
|
48 [dev,pei] = min(abs((ploc(1:npeaks)-1)/N*fs-hf(hi))); % closest peak
|
yading@10
|
49 if ((hi==1 || ~any(hloc(1:hi-1)==ploc(pei))) && dev<maxhd*hf(hi))
|
yading@10
|
50 hloc(hi) = ploc(pei); % harmonic locations
|
yading@10
|
51 hmag(hi) = pmag(pei); % harmonic magnitudes
|
yading@10
|
52 hphase(hi) = pphase(pei); % harmonic phases
|
yading@10
|
53 end
|
yading@10
|
54 hi = hi+1; %increase harmonic index
|
yading@10
|
55 end
|
yading@10
|
56 hloc(1:hi-1) = (hloc(1:hi-1)~=0).*((hloc(1:hi-1)-1)*Ns/N+1); % synth. locs
|
yading@10
|
57 %-----synthesis-----%
|
yading@10
|
58 Yh = genspecsines(hloc(1:hi-1),hmag,hphase,Ns); % generate sines
|
yading@10
|
59 yh = fftshift(real(ifft(Yh))); % sines in time domain
|
yading@10
|
60 y(pin-hNs:pin+hNs-1) = y(pin-hNs:pin+hNs-1) + sw.*yh(1:Ns); % overlap-add
|
yading@10
|
61 pin = pin+H; % advance the input sound pointer
|
yading@10
|
62 end |