m@6
|
1 {
|
m@6
|
2 "cells": [
|
m@6
|
3 {
|
m@6
|
4 "cell_type": "code",
|
m@6
|
5 "execution_count": 1,
|
m@6
|
6 "metadata": {
|
m@6
|
7 "collapsed": true
|
m@6
|
8 },
|
m@6
|
9 "outputs": [],
|
m@6
|
10 "source": [
|
m@6
|
11 "import numpy as np\n",
|
m@6
|
12 "import pickle"
|
m@6
|
13 ]
|
m@6
|
14 },
|
m@6
|
15 {
|
m@6
|
16 "cell_type": "code",
|
m@6
|
17 "execution_count": 2,
|
m@6
|
18 "metadata": {
|
m@6
|
19 "collapsed": true
|
m@6
|
20 },
|
m@6
|
21 "outputs": [],
|
m@6
|
22 "source": [
|
m@7
|
23 "filenames = ['/import/c4dm-04/mariap/train_data_melodia_8.pickle',\n",
|
m@6
|
24 " '/import/c4dm-04/mariap/val_data_melodia_8.pickle', \n",
|
m@6
|
25 " '/import/c4dm-04/mariap/test_data_melodia_8.pickle']"
|
m@6
|
26 ]
|
m@6
|
27 },
|
m@6
|
28 {
|
m@6
|
29 "cell_type": "code",
|
m@7
|
30 "execution_count": 13,
|
Maria@40
|
31 "metadata": {
|
Maria@40
|
32 "collapsed": true
|
Maria@40
|
33 },
|
m@6
|
34 "outputs": [],
|
m@6
|
35 "source": [
|
m@6
|
36 "all_Yaudio = []\n",
|
m@7
|
37 "all_Y = []\n",
|
m@6
|
38 "for filename in filenames:\n",
|
m@7
|
39 " _, Y, Yaudio = pickle.load(open(filename, 'rb'))\n",
|
m@6
|
40 " all_Yaudio.append(Yaudio)\n",
|
m@7
|
41 " all_Y.append(Y)\n",
|
m@7
|
42 "all_Yaudio = np.concatenate(all_Yaudio)\n",
|
m@7
|
43 "all_Y = np.concatenate(all_Y)"
|
m@6
|
44 ]
|
m@6
|
45 },
|
m@6
|
46 {
|
m@6
|
47 "cell_type": "code",
|
m@7
|
48 "execution_count": 5,
|
Maria@40
|
49 "metadata": {
|
Maria@40
|
50 "collapsed": true
|
Maria@40
|
51 },
|
m@7
|
52 "outputs": [],
|
m@6
|
53 "source": [
|
m@6
|
54 "uniq_audio, uniq_counts = np.unique(all_Yaudio, return_counts=True)"
|
m@6
|
55 ]
|
m@6
|
56 },
|
m@6
|
57 {
|
m@6
|
58 "cell_type": "markdown",
|
m@6
|
59 "metadata": {},
|
m@6
|
60 "source": [
|
m@6
|
61 "## Stats on audio files with very few music frames (after the speech/music discrimination)"
|
m@6
|
62 ]
|
m@6
|
63 },
|
m@6
|
64 {
|
m@6
|
65 "cell_type": "code",
|
m@7
|
66 "execution_count": 8,
|
Maria@40
|
67 "metadata": {
|
Maria@40
|
68 "collapsed": false
|
Maria@40
|
69 },
|
m@6
|
70 "outputs": [
|
m@6
|
71 {
|
m@7
|
72 "name": "stdout",
|
m@7
|
73 "output_type": "stream",
|
m@7
|
74 "text": [
|
m@7
|
75 "63 files out of 8200 have less than 10 frames\n"
|
m@6
|
76 ]
|
m@6
|
77 }
|
m@6
|
78 ],
|
m@6
|
79 "source": [
|
m@6
|
80 "min_n_frames = 10\n",
|
m@7
|
81 "short_files_idx = np.where(uniq_counts<min_n_frames)[0]\n",
|
m@7
|
82 "print '%d files out of %d have less than %d frames' % (len(short_files_idx), len(uniq_counts), min_n_frames)"
|
m@7
|
83 ]
|
m@7
|
84 },
|
m@7
|
85 {
|
m@7
|
86 "cell_type": "markdown",
|
m@7
|
87 "metadata": {},
|
m@7
|
88 "source": [
|
m@7
|
89 "Countries for tracks with less than 10 frames"
|
m@7
|
90 ]
|
m@7
|
91 },
|
m@7
|
92 {
|
m@7
|
93 "cell_type": "code",
|
m@7
|
94 "execution_count": 17,
|
Maria@40
|
95 "metadata": {
|
Maria@40
|
96 "collapsed": false
|
Maria@40
|
97 },
|
m@7
|
98 "outputs": [
|
m@7
|
99 {
|
m@7
|
100 "name": "stdout",
|
m@7
|
101 "output_type": "stream",
|
m@7
|
102 "text": [
|
m@7
|
103 "{'Italy': 1, 'Peru': 1, 'Solomon Islands': 2, 'France': 2, 'Ethiopia': 1, 'Somalia': 1, 'Ireland': 1, 'Swaziland': 1, 'Argentina': 1, 'Norway': 1, 'Nigeria': 1, 'Algeria': 1, 'Germany': 1, 'Puerto Rico': 1, 'Dominican Republic': 1, 'Poland': 3, 'Spain': 2, 'Netherlands': 1, 'Uganda': 4, 'Western Sahara': 5, 'Gambia': 2, 'Philippines': 2, 'Trinidad and Tobago': 1, 'Latvia': 1, 'South Sudan': 3, 'Mali': 1, 'Russia': 1, 'Romania': 1, 'Portugal': 1, 'South Africa': 3, 'Egypt': 1, 'Sierra Leone': 1, 'United Kingdom': 4, 'Lesotho': 1, 'Senegal': 2, 'Colombia': 2, 'Japan': 2, 'Nicaragua': 1, 'Botswana': 1}\n"
|
m@7
|
104 ]
|
m@7
|
105 }
|
m@7
|
106 ],
|
m@7
|
107 "source": [
|
m@7
|
108 "countries = np.array([all_Y[np.where(all_Yaudio==uniq_audio[audio_idx])[0][0]][0] for audio_idx in short_files_idx])\n",
|
m@7
|
109 "unique, counts = np.unique(countries, return_counts=True)\n",
|
m@7
|
110 "print dict(zip(unique, counts))"
|
m@6
|
111 ]
|
m@6
|
112 },
|
m@6
|
113 {
|
m@6
|
114 "cell_type": "markdown",
|
m@6
|
115 "metadata": {},
|
m@6
|
116 "source": [
|
m@6
|
117 "## Stats on average duration of the music segments for all tracks"
|
m@6
|
118 ]
|
m@6
|
119 },
|
m@6
|
120 {
|
m@6
|
121 "cell_type": "code",
|
m@7
|
122 "execution_count": 18,
|
Maria@40
|
123 "metadata": {
|
Maria@40
|
124 "collapsed": false
|
Maria@40
|
125 },
|
m@6
|
126 "outputs": [
|
m@6
|
127 {
|
m@7
|
128 "name": "stdout",
|
m@7
|
129 "output_type": "stream",
|
m@7
|
130 "text": [
|
m@7
|
131 "mean 65.750000\n",
|
m@7
|
132 "median 44.000000\n",
|
m@7
|
133 "std 45.947865\n",
|
m@7
|
134 "mean duration 32.875000\n"
|
m@6
|
135 ]
|
m@6
|
136 }
|
m@6
|
137 ],
|
m@6
|
138 "source": [
|
m@6
|
139 "sr = 2.0 # with 8-second window and 0.5-second hop size the sampling rate is 2 about 2 samples per second\n",
|
m@6
|
140 "print 'mean %f' % np.mean(uniq_counts)\n",
|
m@6
|
141 "print 'median %f' % np.median(uniq_counts)\n",
|
m@6
|
142 "print 'std %f' % np.std(uniq_counts)\n",
|
m@6
|
143 "print 'mean duration %f' % (np.mean(uniq_counts) / sr)"
|
m@6
|
144 ]
|
m@6
|
145 },
|
m@6
|
146 {
|
m@6
|
147 "cell_type": "markdown",
|
m@6
|
148 "metadata": {},
|
m@6
|
149 "source": [
|
m@7
|
150 "## Stats on average duration of the music segments for the Smithsonian tracks"
|
m@7
|
151 ]
|
m@7
|
152 },
|
m@7
|
153 {
|
m@7
|
154 "cell_type": "code",
|
m@7
|
155 "execution_count": 23,
|
Maria@40
|
156 "metadata": {
|
Maria@40
|
157 "collapsed": false
|
Maria@40
|
158 },
|
m@7
|
159 "outputs": [
|
m@7
|
160 {
|
m@7
|
161 "name": "stdout",
|
m@7
|
162 "output_type": "stream",
|
m@7
|
163 "text": [
|
m@7
|
164 "n tracks: 6132\n",
|
m@7
|
165 "mean 42.618885\n",
|
m@7
|
166 "median 44.000000\n",
|
m@7
|
167 "std 4.804534\n",
|
m@7
|
168 "mean duration 21.309442\n"
|
m@7
|
169 ]
|
m@7
|
170 }
|
m@7
|
171 ],
|
m@7
|
172 "source": [
|
m@7
|
173 "#British library tracks start with 'D:/Audio/...'\n",
|
m@7
|
174 "idx_SM_tracks = np.array([i for i in range(len(uniq_audio)) if len(uniq_audio[i].split('D:/'))==1])\n",
|
m@7
|
175 "sr = 2.0 # with 8-second window and 0.5-second hop size the sampling rate is 2 about 2 samples per second\n",
|
m@7
|
176 "print 'n tracks: %d' % len(idx_SM_tracks)\n",
|
m@7
|
177 "print 'mean %f' % np.mean(uniq_counts[idx_SM_tracks])\n",
|
m@7
|
178 "print 'median %f' % np.median(uniq_counts[idx_SM_tracks])\n",
|
m@7
|
179 "print 'std %f' % np.std(uniq_counts[idx_SM_tracks])\n",
|
m@7
|
180 "print 'mean duration %f' % (np.mean(uniq_counts[idx_SM_tracks]) / sr)"
|
m@7
|
181 ]
|
m@7
|
182 },
|
m@7
|
183 {
|
m@7
|
184 "cell_type": "markdown",
|
m@7
|
185 "metadata": {},
|
m@7
|
186 "source": [
|
m@6
|
187 "## Stats on average duration of the music segments for the British Library tracks"
|
m@6
|
188 ]
|
m@6
|
189 },
|
m@6
|
190 {
|
m@6
|
191 "cell_type": "code",
|
m@7
|
192 "execution_count": 22,
|
Maria@40
|
193 "metadata": {
|
Maria@40
|
194 "collapsed": false
|
Maria@40
|
195 },
|
m@6
|
196 "outputs": [
|
m@6
|
197 {
|
m@7
|
198 "name": "stdout",
|
m@7
|
199 "output_type": "stream",
|
m@7
|
200 "text": [
|
m@7
|
201 "n tracks: 2068\n",
|
m@7
|
202 "mean 134.338008\n",
|
m@7
|
203 "median 163.000000\n",
|
m@7
|
204 "std 44.855790\n",
|
m@7
|
205 "mean duration 67.169004\n"
|
m@6
|
206 ]
|
m@6
|
207 }
|
m@6
|
208 ],
|
m@6
|
209 "source": [
|
m@6
|
210 "#British library tracks start with 'D:/Audio/...'\n",
|
m@6
|
211 "idx_BL_tracks = np.array([i for i in range(len(uniq_audio)) if len(uniq_audio[i].split('D:/'))>1])\n",
|
m@6
|
212 "sr = 2.0 # with 8-second window and 0.5-second hop size the sampling rate is 2 about 2 samples per second\n",
|
m@7
|
213 "print 'n tracks: %d' % len(idx_BL_tracks)\n",
|
m@6
|
214 "print 'mean %f' % np.mean(uniq_counts[idx_BL_tracks])\n",
|
m@6
|
215 "print 'median %f' % np.median(uniq_counts[idx_BL_tracks])\n",
|
m@6
|
216 "print 'std %f' % np.std(uniq_counts[idx_BL_tracks])\n",
|
m@6
|
217 "print 'mean duration %f' % (np.mean(uniq_counts[idx_BL_tracks]) / sr)"
|
m@6
|
218 ]
|
m@6
|
219 },
|
m@6
|
220 {
|
m@6
|
221 "cell_type": "code",
|
m@6
|
222 "execution_count": null,
|
m@6
|
223 "metadata": {
|
m@6
|
224 "collapsed": true
|
m@6
|
225 },
|
m@6
|
226 "outputs": [],
|
m@6
|
227 "source": []
|
m@6
|
228 }
|
m@6
|
229 ],
|
m@6
|
230 "metadata": {
|
m@6
|
231 "kernelspec": {
|
m@6
|
232 "display_name": "Python 2",
|
m@6
|
233 "language": "python",
|
m@6
|
234 "name": "python2"
|
m@6
|
235 },
|
m@6
|
236 "language_info": {
|
m@6
|
237 "codemirror_mode": {
|
m@6
|
238 "name": "ipython",
|
m@6
|
239 "version": 2
|
m@6
|
240 },
|
m@6
|
241 "file_extension": ".py",
|
m@6
|
242 "mimetype": "text/x-python",
|
m@6
|
243 "name": "python",
|
m@6
|
244 "nbconvert_exporter": "python",
|
m@6
|
245 "pygments_lexer": "ipython2",
|
Maria@40
|
246 "version": "2.7.11"
|
m@6
|
247 }
|
m@6
|
248 },
|
m@6
|
249 "nbformat": 4,
|
m@7
|
250 "nbformat_minor": 1
|
m@6
|
251 }
|