m@6: { m@6: "cells": [ m@6: { m@6: "cell_type": "code", m@6: "execution_count": 1, m@6: "metadata": { m@6: "collapsed": true m@6: }, m@6: "outputs": [], m@6: "source": [ m@6: "import numpy as np\n", m@6: "import pickle" m@6: ] m@6: }, m@6: { m@6: "cell_type": "code", m@6: "execution_count": 2, m@6: "metadata": { m@6: "collapsed": true m@6: }, m@6: "outputs": [], m@6: "source": [ m@7: "filenames = ['/import/c4dm-04/mariap/train_data_melodia_8.pickle',\n", m@6: " '/import/c4dm-04/mariap/val_data_melodia_8.pickle', \n", m@6: " '/import/c4dm-04/mariap/test_data_melodia_8.pickle']" m@6: ] m@6: }, m@6: { m@6: "cell_type": "code", m@7: "execution_count": 13, Maria@40: "metadata": { Maria@40: "collapsed": true Maria@40: }, m@6: "outputs": [], m@6: "source": [ m@6: "all_Yaudio = []\n", m@7: "all_Y = []\n", m@6: "for filename in filenames:\n", m@7: " _, Y, Yaudio = pickle.load(open(filename, 'rb'))\n", m@6: " all_Yaudio.append(Yaudio)\n", m@7: " all_Y.append(Y)\n", m@7: "all_Yaudio = np.concatenate(all_Yaudio)\n", m@7: "all_Y = np.concatenate(all_Y)" m@6: ] m@6: }, m@6: { m@6: "cell_type": "code", m@7: "execution_count": 5, Maria@40: "metadata": { Maria@40: "collapsed": true Maria@40: }, m@7: "outputs": [], m@6: "source": [ m@6: "uniq_audio, uniq_counts = np.unique(all_Yaudio, return_counts=True)" m@6: ] m@6: }, m@6: { m@6: "cell_type": "markdown", m@6: "metadata": {}, m@6: "source": [ m@6: "## Stats on audio files with very few music frames (after the speech/music discrimination)" m@6: ] m@6: }, m@6: { m@6: "cell_type": "code", m@7: "execution_count": 8, Maria@40: "metadata": { Maria@40: "collapsed": false Maria@40: }, m@6: "outputs": [ m@6: { m@7: "name": "stdout", m@7: "output_type": "stream", m@7: "text": [ m@7: "63 files out of 8200 have less than 10 frames\n" m@6: ] m@6: } m@6: ], m@6: "source": [ m@6: "min_n_frames = 10\n", m@7: "short_files_idx = np.where(uniq_counts1])\n", m@6: "sr = 2.0 # with 8-second window and 0.5-second hop size the sampling rate is 2 about 2 samples per second\n", m@7: "print 'n tracks: %d' % len(idx_BL_tracks)\n", m@6: "print 'mean %f' % np.mean(uniq_counts[idx_BL_tracks])\n", m@6: "print 'median %f' % np.median(uniq_counts[idx_BL_tracks])\n", m@6: "print 'std %f' % np.std(uniq_counts[idx_BL_tracks])\n", m@6: "print 'mean duration %f' % (np.mean(uniq_counts[idx_BL_tracks]) / sr)" m@6: ] m@6: }, m@6: { m@6: "cell_type": "code", m@6: "execution_count": null, m@6: "metadata": { m@6: "collapsed": true m@6: }, m@6: "outputs": [], m@6: "source": [] m@6: } m@6: ], m@6: "metadata": { m@6: "kernelspec": { m@6: "display_name": "Python 2", m@6: "language": "python", m@6: "name": "python2" m@6: }, m@6: "language_info": { m@6: "codemirror_mode": { m@6: "name": "ipython", m@6: "version": 2 m@6: }, m@6: "file_extension": ".py", m@6: "mimetype": "text/x-python", m@6: "name": "python", m@6: "nbconvert_exporter": "python", m@6: "pygments_lexer": "ipython2", Maria@40: "version": "2.7.11" m@6: } m@6: }, m@6: "nbformat": 4, m@7: "nbformat_minor": 1 m@6: }