annotate NNLSChroma.cpp @ 116:9f7ba52207dc monophonicness

rename variables for better readability
author Matthias Mauch <mail@matthiasmauch.net>
date Thu, 31 Mar 2011 14:31:04 +0100
parents 96cea9c05046
children 5f3d3ea6aab6
rev   line source
Chris@23 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
matthiasm@0 2
Chris@35 3 /*
Chris@35 4 NNLS-Chroma / Chordino
Chris@35 5
Chris@35 6 Audio feature extraction plugins for chromagram and chord
Chris@35 7 estimation.
Chris@35 8
Chris@35 9 Centre for Digital Music, Queen Mary University of London.
Chris@35 10 This file copyright 2008-2010 Matthias Mauch and QMUL.
Chris@35 11
Chris@35 12 This program is free software; you can redistribute it and/or
Chris@35 13 modify it under the terms of the GNU General Public License as
Chris@35 14 published by the Free Software Foundation; either version 2 of the
Chris@35 15 License, or (at your option) any later version. See the file
Chris@35 16 COPYING included with this distribution for more information.
Chris@35 17 */
Chris@35 18
matthiasm@0 19 #include "NNLSChroma.h"
Chris@27 20
Chris@27 21 #include "chromamethods.h"
Chris@27 22
Chris@27 23 #include <cstdlib>
Chris@27 24 #include <fstream>
matthiasm@0 25 #include <cmath>
matthiasm@9 26
Chris@27 27 #include <algorithm>
matthiasm@0 28
matthiasm@0 29 const bool debug_on = false;
matthiasm@0 30
matthiasm@0 31 NNLSChroma::NNLSChroma(float inputSampleRate) :
Chris@35 32 NNLSBase(inputSampleRate)
matthiasm@0 33 {
Chris@23 34 if (debug_on) cerr << "--> NNLSChroma" << endl;
matthiasm@0 35 }
matthiasm@0 36
matthiasm@0 37 NNLSChroma::~NNLSChroma()
matthiasm@0 38 {
Chris@23 39 if (debug_on) cerr << "--> ~NNLSChroma" << endl;
matthiasm@0 40 }
matthiasm@0 41
matthiasm@0 42 string
matthiasm@0 43 NNLSChroma::getIdentifier() const
matthiasm@0 44 {
Chris@23 45 if (debug_on) cerr << "--> getIdentifier" << endl;
matthiasm@46 46 return "nnls-chroma";
matthiasm@0 47 }
matthiasm@0 48
matthiasm@0 49 string
matthiasm@0 50 NNLSChroma::getName() const
matthiasm@0 51 {
Chris@23 52 if (debug_on) cerr << "--> getName" << endl;
matthiasm@0 53 return "NNLS Chroma";
matthiasm@0 54 }
matthiasm@0 55
matthiasm@0 56 string
matthiasm@0 57 NNLSChroma::getDescription() const
matthiasm@0 58 {
Chris@23 59 if (debug_on) cerr << "--> getDescription" << endl;
matthiasm@58 60 return "This plugin provides a number of features derived from a DFT-based log-frequency amplitude spectrum: some variants of the log-frequency spectrum, including a semitone spectrum derived from approximate transcription using the NNLS algorithm; and based on this semitone spectrum, different chroma features.";
matthiasm@0 61 }
matthiasm@0 62
matthiasm@0 63 NNLSChroma::OutputList
matthiasm@0 64 NNLSChroma::getOutputDescriptors() const
matthiasm@0 65 {
Chris@23 66 if (debug_on) cerr << "--> getOutputDescriptors" << endl;
matthiasm@0 67 OutputList list;
matthiasm@0 68
matthiasm@0 69 // Make chroma names for the binNames property
matthiasm@0 70 vector<string> chromanames;
matthiasm@0 71 vector<string> bothchromanames;
matthiasm@0 72 for (int iNote = 0; iNote < 24; iNote++) {
matthiasm@0 73 bothchromanames.push_back(notenames[iNote]);
matthiasm@0 74 if (iNote < 12) {
matthiasm@43 75 chromanames.push_back(notenames[iNote+12]);
matthiasm@0 76 }
matthiasm@0 77 }
matthiasm@0 78
Chris@35 79 int index = 0;
matthiasm@0 80
Chris@23 81 OutputDescriptor d1;
matthiasm@0 82 d1.identifier = "logfreqspec";
matthiasm@0 83 d1.name = "Log-Frequency Spectrum";
matthiasm@0 84 d1.description = "A Log-Frequency Spectrum (constant Q) that is obtained by cosine filter mapping.";
matthiasm@0 85 d1.unit = "";
matthiasm@0 86 d1.hasFixedBinCount = true;
matthiasm@0 87 d1.binCount = nNote;
matthiasm@0 88 d1.hasKnownExtents = false;
matthiasm@0 89 d1.isQuantized = false;
matthiasm@0 90 d1.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 91 d1.hasDuration = false;
matthiasm@0 92 d1.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 93 list.push_back(d1);
Chris@35 94 m_outputLogSpec = index++;
matthiasm@0 95
Chris@23 96 OutputDescriptor d2;
matthiasm@0 97 d2.identifier = "tunedlogfreqspec";
matthiasm@0 98 d2.name = "Tuned Log-Frequency Spectrum";
matthiasm@0 99 d2.description = "A Log-Frequency Spectrum (constant Q) that is obtained by cosine filter mapping, then its tuned using the estimated tuning frequency.";
matthiasm@0 100 d2.unit = "";
matthiasm@0 101 d2.hasFixedBinCount = true;
mail@77 102 d2.binCount = nNote;
matthiasm@0 103 d2.hasKnownExtents = false;
matthiasm@0 104 d2.isQuantized = false;
matthiasm@0 105 d2.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 106 d2.hasDuration = false;
matthiasm@0 107 d2.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 108 list.push_back(d2);
Chris@35 109 m_outputTunedSpec = index++;
matthiasm@0 110
matthiasm@0 111 OutputDescriptor d3;
matthiasm@0 112 d3.identifier = "semitonespectrum";
matthiasm@0 113 d3.name = "Semitone Spectrum";
matthiasm@0 114 d3.description = "A semitone-spaced log-frequency spectrum derived from the third-of-a-semitone-spaced tuned log-frequency spectrum.";
matthiasm@0 115 d3.unit = "";
matthiasm@0 116 d3.hasFixedBinCount = true;
matthiasm@0 117 d3.binCount = 84;
matthiasm@0 118 d3.hasKnownExtents = false;
matthiasm@0 119 d3.isQuantized = false;
matthiasm@0 120 d3.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 121 d3.hasDuration = false;
matthiasm@0 122 d3.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 123 list.push_back(d3);
Chris@35 124 m_outputSemiSpec = index++;
matthiasm@0 125
matthiasm@0 126 OutputDescriptor d4;
matthiasm@0 127 d4.identifier = "chroma";
matthiasm@0 128 d4.name = "Chromagram";
matthiasm@58 129 d4.description = "Tuning-adjusted chromagram from NNLS approximate transcription, with an emphasis on the medium note range.";
matthiasm@0 130 d4.unit = "";
matthiasm@0 131 d4.hasFixedBinCount = true;
matthiasm@0 132 d4.binCount = 12;
matthiasm@0 133 d4.binNames = chromanames;
matthiasm@0 134 d4.hasKnownExtents = false;
matthiasm@0 135 d4.isQuantized = false;
matthiasm@0 136 d4.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 137 d4.hasDuration = false;
matthiasm@0 138 d4.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 139 list.push_back(d4);
Chris@35 140 m_outputChroma = index++;
matthiasm@0 141
mail@116 142 OutputDescriptor basschromaOutput;
mail@116 143 basschromaOutput.identifier = "basschroma";
mail@116 144 basschromaOutput.name = "Bass Chromagram";
mail@116 145 basschromaOutput.description = "Tuning-adjusted bass chromagram from NNLS approximate transcription, with an emphasis on the bass note range.";
mail@116 146 basschromaOutput.unit = "";
mail@116 147 basschromaOutput.hasFixedBinCount = true;
mail@116 148 basschromaOutput.binCount = 12;
mail@116 149 basschromaOutput.binNames = chromanames;
mail@116 150 basschromaOutput.hasKnownExtents = false;
mail@116 151 basschromaOutput.isQuantized = false;
mail@116 152 basschromaOutput.sampleType = OutputDescriptor::FixedSampleRate;
mail@116 153 basschromaOutput.hasDuration = false;
mail@116 154 basschromaOutput.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
mail@116 155 list.push_back(basschromaOutput);
Chris@35 156 m_outputBassChroma = index++;
matthiasm@0 157
mail@116 158 OutputDescriptor bothchromaOutput;
mail@116 159 bothchromaOutput.identifier = "bothchroma";
mail@116 160 bothchromaOutput.name = "Chromagram and Bass Chromagram";
mail@116 161 bothchromaOutput.description = "Tuning-adjusted chromagram and bass chromagram (stacked on top of each other) from NNLS approximate transcription.";
mail@116 162 bothchromaOutput.unit = "";
mail@116 163 bothchromaOutput.hasFixedBinCount = true;
mail@116 164 bothchromaOutput.binCount = 24;
mail@116 165 bothchromaOutput.binNames = bothchromanames;
mail@116 166 bothchromaOutput.hasKnownExtents = false;
mail@116 167 bothchromaOutput.isQuantized = false;
mail@116 168 bothchromaOutput.sampleType = OutputDescriptor::FixedSampleRate;
mail@116 169 bothchromaOutput.hasDuration = false;
mail@116 170 bothchromaOutput.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
mail@116 171 list.push_back(bothchromaOutput);
Chris@35 172 m_outputBothChroma = index++;
matthiasm@1 173
mail@116 174 OutputDescriptor consonanceOutput;
mail@116 175 consonanceOutput.identifier = "consonance";
mail@116 176 consonanceOutput.name = "Consonance estimate.";
mail@116 177 consonanceOutput.description = "A simple consonance value based on the convolution of a consonance profile with the semitone spectrum.";
mail@116 178 consonanceOutput.unit = "";
mail@116 179 consonanceOutput.hasFixedBinCount = true;
mail@116 180 consonanceOutput.binCount = 1;
mail@116 181 consonanceOutput.hasKnownExtents = false;
mail@116 182 consonanceOutput.isQuantized = false;
mail@116 183 consonanceOutput.sampleType = OutputDescriptor::FixedSampleRate;
mail@116 184 consonanceOutput.hasDuration = false;
mail@116 185 consonanceOutput.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
mail@116 186 list.push_back(consonanceOutput);
mail@83 187 m_outputConsonance = index++;
mail@83 188
mail@116 189 OutputDescriptor monophonicnessOutput;
mail@116 190 monophonicnessOutput.identifier = "monophonicness";
mail@116 191 monophonicnessOutput.name = "Monophonicness estimate.";
mail@116 192 monophonicnessOutput.description = ".";
mail@116 193 monophonicnessOutput.unit = "";
mail@116 194 monophonicnessOutput.hasFixedBinCount = true;
mail@116 195 monophonicnessOutput.binCount = 1;
mail@116 196 monophonicnessOutput.hasKnownExtents = true;
mail@116 197 monophonicnessOutput.minValue = 0;
mail@116 198 monophonicnessOutput.maxValue = 1;
mail@116 199 monophonicnessOutput.isQuantized = false;
mail@116 200 monophonicnessOutput.sampleType = OutputDescriptor::FixedSampleRate;
mail@116 201 monophonicnessOutput.hasDuration = false;
mail@116 202 monophonicnessOutput.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
mail@116 203 list.push_back(monophonicnessOutput);
matthiasm@105 204 m_outputMonophonicness = index++;
matthiasm@105 205
matthiasm@0 206 return list;
matthiasm@0 207 }
matthiasm@0 208
matthiasm@0 209
matthiasm@0 210 bool
matthiasm@0 211 NNLSChroma::initialise(size_t channels, size_t stepSize, size_t blockSize)
matthiasm@0 212 {
Chris@23 213 if (debug_on) {
Chris@23 214 cerr << "--> initialise";
Chris@23 215 }
matthiasm@1 216
Chris@35 217 if (!NNLSBase::initialise(channels, stepSize, blockSize)) {
Chris@35 218 return false;
Chris@35 219 }
matthiasm@1 220
matthiasm@0 221 return true;
matthiasm@0 222 }
matthiasm@0 223
matthiasm@0 224 void
matthiasm@0 225 NNLSChroma::reset()
matthiasm@0 226 {
Chris@23 227 if (debug_on) cerr << "--> reset";
Chris@35 228 NNLSBase::reset();
matthiasm@0 229 }
matthiasm@0 230
matthiasm@0 231 NNLSChroma::FeatureSet
matthiasm@0 232 NNLSChroma::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
matthiasm@0 233 {
Chris@23 234 if (debug_on) cerr << "--> process" << endl;
Chris@35 235
Chris@35 236 NNLSBase::baseProcess(inputBuffers, timestamp);
matthiasm@0 237
Chris@23 238 FeatureSet fs;
Chris@35 239 fs[m_outputLogSpec].push_back(m_logSpectrum[m_logSpectrum.size()-1]);
Chris@23 240 return fs;
matthiasm@0 241 }
matthiasm@0 242
matthiasm@0 243 NNLSChroma::FeatureSet
matthiasm@0 244 NNLSChroma::getRemainingFeatures()
matthiasm@0 245 {
mail@100 246 static const int nConsonance = 24;
mail@100 247 float consonancepattern[nConsonance] = {0,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,1,-1,-1};
mail@100 248 float consonancemean = 0;
mail@100 249 for (int i = 0; i< nConsonance; ++i) {
mail@100 250 consonancemean += consonancepattern[i]/nConsonance;
mail@100 251 }
mail@84 252
mail@111 253 // cerr << "consonancemean = " << consonancemean << endl;
mail@100 254
mail@100 255 for (int i = 0; i< nConsonance; ++i) {
mail@100 256 consonancepattern[i] -= consonancemean;
mail@100 257 }
Chris@23 258 if (debug_on) cerr << "--> getRemainingFeatures" << endl;
Chris@23 259 FeatureSet fsOut;
Chris@35 260 if (m_logSpectrum.size() == 0) return fsOut;
Chris@23 261 //
Chris@23 262 /** Calculate Tuning
Chris@23 263 calculate tuning from (using the angle of the complex number defined by the
Chris@23 264 cumulative mean real and imag values)
Chris@23 265 **/
mail@80 266 float meanTuningImag = 0;
mail@80 267 float meanTuningReal = 0;
mail@80 268 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 269 meanTuningReal += m_meanTunings[iBPS] * cosvalues[iBPS];
mail@80 270 meanTuningImag += m_meanTunings[iBPS] * sinvalues[iBPS];
mail@80 271 }
Chris@23 272 float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
Chris@23 273 float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
Chris@23 274 int intShift = floor(normalisedtuning * 3);
mail@80 275 float floatShift = normalisedtuning * 3 - intShift; // floatShift is a really bad name for this
matthiasm@1 276
Chris@23 277 char buffer0 [50];
matthiasm@1 278
Chris@23 279 sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
matthiasm@1 280
Chris@23 281 // cerr << "normalisedtuning: " << normalisedtuning << '\n';
matthiasm@1 282
Chris@23 283 /** Tune Log-Frequency Spectrogram
Chris@23 284 calculate a tuned log-frequency spectrogram (f2): use the tuning estimated above (kinda f0) to
Chris@23 285 perform linear interpolation on the existing log-frequency spectrogram (kinda f1).
Chris@23 286 **/
Chris@23 287 cerr << endl << "[NNLS Chroma Plugin] Tuning Log-Frequency Spectrogram ... ";
matthiasm@13 288
Chris@23 289 float tempValue = 0;
Chris@23 290 float dbThreshold = 0; // relative to the background spectrum
Chris@23 291 float thresh = pow(10,dbThreshold/20);
Chris@23 292 // cerr << "tune local ? " << m_tuneLocal << endl;
Chris@23 293 int count = 0;
mail@77 294
matthiasm@1 295
Chris@35 296 for (FeatureList::iterator i = m_logSpectrum.begin(); i != m_logSpectrum.end(); ++i) {
Chris@23 297 Feature f1 = *i;
Chris@23 298 Feature f2; // tuned log-frequency spectrum
Chris@23 299 f2.hasTimestamp = true;
Chris@23 300 f2.timestamp = f1.timestamp;
Chris@23 301 f2.values.push_back(0.0); f2.values.push_back(0.0); // set lower edge to zero
matthiasm@1 302
matthiasm@85 303
Chris@23 304 if (m_tuneLocal) {
Chris@23 305 intShift = floor(m_localTuning[count] * 3);
mail@80 306 floatShift = m_localTuning[count] * 3 - intShift; // floatShift is a really bad name for this
Chris@23 307 }
matthiasm@1 308
mail@80 309 // cerr << intShift << " " << floatShift << endl;
matthiasm@1 310
Chris@23 311 for (unsigned k = 2; k < f1.values.size() - 3; ++k) { // interpolate all inner bins
mail@80 312 tempValue = f1.values[k + intShift] * (1-floatShift) + f1.values[k+intShift+1] * floatShift;
Chris@23 313 f2.values.push_back(tempValue);
Chris@23 314 }
matthiasm@1 315
Chris@23 316 f2.values.push_back(0.0); f2.values.push_back(0.0); f2.values.push_back(0.0); // upper edge
mail@77 317
Chris@23 318 vector<float> runningmean = SpecialConvolution(f2.values,hw);
Chris@23 319 vector<float> runningstd;
mail@77 320 for (int i = 0; i < nNote; i++) { // first step: squared values into vector (variance)
Chris@23 321 runningstd.push_back((f2.values[i] - runningmean[i]) * (f2.values[i] - runningmean[i]));
Chris@23 322 }
Chris@23 323 runningstd = SpecialConvolution(runningstd,hw); // second step convolve
mail@77 324 for (int i = 0; i < nNote; i++) {
Chris@23 325 runningstd[i] = sqrt(runningstd[i]); // square root to finally have running std
Chris@23 326 if (runningstd[i] > 0) {
Chris@23 327 // f2.values[i] = (f2.values[i] / runningmean[i]) > thresh ?
mail@41 328 // (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
Chris@23 329 f2.values[i] = (f2.values[i] - runningmean[i]) > 0 ?
mail@41 330 (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
Chris@23 331 }
Chris@23 332 if (f2.values[i] < 0) {
Chris@23 333 cerr << "ERROR: negative value in logfreq spectrum" << endl;
Chris@23 334 }
Chris@23 335 }
Chris@35 336 fsOut[m_outputTunedSpec].push_back(f2);
Chris@23 337 count++;
Chris@23 338 }
Chris@23 339 cerr << "done." << endl;
matthiasm@1 340
Chris@23 341 /** Semitone spectrum and chromagrams
Chris@23 342 Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum above. the spectrum
Chris@23 343 is inferred using a non-negative least squares algorithm.
Chris@23 344 Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
Chris@23 345 bass and treble stacked onto each other).
Chris@23 346 **/
matthiasm@42 347 if (m_useNNLS == 0) {
Chris@23 348 cerr << "[NNLS Chroma Plugin] Mapping to semitone spectrum and chroma ... ";
Chris@23 349 } else {
Chris@23 350 cerr << "[NNLS Chroma Plugin] Performing NNLS and mapping to chroma ... ";
Chris@23 351 }
matthiasm@13 352
matthiasm@1 353
Chris@23 354 vector<float> oldchroma = vector<float>(12,0);
Chris@23 355 vector<float> oldbasschroma = vector<float>(12,0);
Chris@23 356 count = 0;
matthiasm@9 357
Chris@38 358 for (FeatureList::iterator it = fsOut[m_outputTunedSpec].begin(); it != fsOut[m_outputTunedSpec].end(); ++it) {
Chris@23 359 Feature f2 = *it; // logfreq spectrum
Chris@23 360 Feature f3; // semitone spectrum
Chris@23 361 Feature f4; // treble chromagram
Chris@23 362 Feature f5; // bass chromagram
Chris@23 363 Feature f6; // treble and bass chromagram
matthiasm@85 364 Feature consonance;
matthiasm@105 365 Feature monophonicness;
matthiasm@85 366
Chris@23 367 f3.hasTimestamp = true;
Chris@23 368 f3.timestamp = f2.timestamp;
matthiasm@1 369
Chris@23 370 f4.hasTimestamp = true;
Chris@23 371 f4.timestamp = f2.timestamp;
matthiasm@1 372
Chris@23 373 f5.hasTimestamp = true;
Chris@23 374 f5.timestamp = f2.timestamp;
matthiasm@1 375
Chris@23 376 f6.hasTimestamp = true;
Chris@23 377 f6.timestamp = f2.timestamp;
matthiasm@1 378
matthiasm@85 379 consonance.hasTimestamp = true;
matthiasm@85 380 consonance.timestamp = f2.timestamp;
matthiasm@105 381
matthiasm@105 382 monophonicness.hasTimestamp = true;
matthiasm@105 383 monophonicness.timestamp = f2.timestamp;
matthiasm@85 384
mail@77 385 float b[nNote];
matthiasm@1 386
Chris@23 387 bool some_b_greater_zero = false;
Chris@23 388 float sumb = 0;
mail@77 389 for (int i = 0; i < nNote; i++) {
mail@77 390 // b[i] = m_dict[(nNote * count + i) % (nNote * 84)];
Chris@23 391 b[i] = f2.values[i];
Chris@23 392 sumb += b[i];
Chris@23 393 if (b[i] > 0) {
Chris@23 394 some_b_greater_zero = true;
Chris@23 395 }
Chris@23 396 }
matthiasm@1 397
Chris@23 398 // here's where the non-negative least squares algorithm calculates the note activation x
matthiasm@1 399
Chris@23 400 vector<float> chroma = vector<float>(12, 0);
Chris@23 401 vector<float> basschroma = vector<float>(12, 0);
Chris@23 402 float currval;
Chris@23 403 unsigned iSemitone = 0;
matthiasm@1 404
Chris@23 405 if (some_b_greater_zero) {
matthiasm@42 406 if (m_useNNLS == 0) {
mail@80 407 for (unsigned iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
Chris@23 408 currval = 0;
mail@80 409 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
mail@80 410 currval += b[iNote + iBPS] * (1-abs(iBPS*1.0/(nBPS/2+1)));
mail@80 411 }
Chris@23 412 f3.values.push_back(currval);
Chris@23 413 chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
Chris@23 414 basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
Chris@23 415 iSemitone++;
Chris@23 416 }
matthiasm@1 417
Chris@23 418 } else {
Chris@35 419 float x[84+1000];
Chris@23 420 for (int i = 1; i < 1084; ++i) x[i] = 1.0;
Chris@23 421 vector<int> signifIndex;
Chris@23 422 int index=0;
Chris@23 423 sumb /= 84.0;
mail@80 424 for (unsigned iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
Chris@23 425 float currval = 0;
mail@80 426 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
mail@80 427 currval += b[iNote + iBPS];
mail@80 428 }
Chris@23 429 if (currval > 0) signifIndex.push_back(index);
Chris@23 430 f3.values.push_back(0); // fill the values, change later
Chris@23 431 index++;
Chris@23 432 }
Chris@35 433 float rnorm;
Chris@35 434 float w[84+1000];
Chris@35 435 float zz[84+1000];
Chris@23 436 int indx[84+1000];
Chris@23 437 int mode;
mail@77 438 int dictsize = nNote*signifIndex.size();
Chris@23 439 // cerr << "dictsize is " << dictsize << "and values size" << f3.values.size()<< endl;
Chris@35 440 float *curr_dict = new float[dictsize];
Chris@91 441 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
Chris@91 442 for (int iBin = 0; iBin < nNote; iBin++) {
mail@77 443 curr_dict[iNote * nNote + iBin] = 1.0 * m_dict[signifIndex[iNote] * nNote + iBin];
Chris@23 444 }
Chris@23 445 }
Chris@35 446 nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode);
Chris@23 447 delete [] curr_dict;
Chris@91 448 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
Chris@23 449 f3.values[signifIndex[iNote]] = x[iNote];
Chris@23 450 // cerr << mode << endl;
Chris@23 451 chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
Chris@23 452 basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
Chris@23 453 }
Chris@23 454 }
matthiasm@79 455 } else {
matthiasm@79 456 for (int i = 0; i < 84; ++i) f3.values.push_back(0);
Chris@23 457 }
matthiasm@85 458
matthiasm@85 459 float notesum = 0;
matthiasm@85 460
matthiasm@85 461 consonance.values.push_back(0);
matthiasm@104 462
matthiasm@105 463 float note_max = 0;
matthiasm@105 464 float note_runnerup = 0;
matthiasm@105 465 // float note_sum = 0;
matthiasm@105 466 for (int iSemitone = 0; iSemitone < 84; iSemitone++) {
matthiasm@105 467 float currvalue = f3.values[iSemitone] * treblewindow[iSemitone];
matthiasm@105 468 if (currvalue > note_max) {
matthiasm@105 469 note_runnerup = note_max;
matthiasm@105 470 note_max = currvalue;
matthiasm@105 471 } else if (currvalue > note_runnerup) {
matthiasm@105 472 note_runnerup = currvalue;
matthiasm@105 473 }
matthiasm@105 474 // note_sum += note[iPitchClass];
matthiasm@105 475 }
matthiasm@105 476 // float note_monophonicness = 12*note_max/(12*note_max+note_sum);
mail@111 477 // cerr << note_max << endl;
mail@111 478 // cerr << note_runnerup << endl << endl;
matthiasm@105 479 float note_monophonicness = 0.5;
matthiasm@105 480 if (note_max > 0) {
matthiasm@105 481 note_monophonicness = (note_max / (note_max+note_runnerup) - 0.5) * 2;
matthiasm@105 482 }
matthiasm@105 483 monophonicness.values.push_back(note_monophonicness);
matthiasm@105 484
matthiasm@104 485 for (int iSemitone = 0; iSemitone < 84; ++iSemitone) {
matthiasm@104 486 float tempconsonance = 0;
matthiasm@104 487 int sumlength = 1;
matthiasm@85 488 for (int jSemitone = 1; jSemitone < 24; ++jSemitone) {
matthiasm@104 489 if (iSemitone+jSemitone > 84-1) break;
matthiasm@104 490 sumlength++;
mail@100 491 tempconsonance += f3.values[iSemitone+jSemitone] * (consonancepattern[jSemitone]) * treblewindow[iSemitone+jSemitone];
matthiasm@85 492 }
matthiasm@104 493 notesum += f3.values[iSemitone] * f3.values[iSemitone] * treblewindow[iSemitone] * treblewindow[iSemitone] * sumlength;
matthiasm@104 494 consonance.values[0] += (f3.values[iSemitone] * tempconsonance * treblewindow[iSemitone]) * sumlength;
matthiasm@85 495 }
matthiasm@104 496 // cerr << consonance.values[0] << " " << f3.timestamp << " "<< notesum << endl;
matthiasm@86 497 if (notesum > 0) consonance.values[0] /= notesum;
matthiasm@104 498
matthiasm@85 499
Chris@23 500 f4.values = chroma;
Chris@23 501 f5.values = basschroma;
Chris@23 502 chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end()); // just stack the both chromas
Chris@23 503 f6.values = chroma;
matthiasm@1 504
Chris@23 505 if (m_doNormalizeChroma > 0) {
Chris@23 506 vector<float> chromanorm = vector<float>(3,0);
Chris@23 507 switch (int(m_doNormalizeChroma)) {
Chris@23 508 case 0: // should never end up here
Chris@23 509 break;
Chris@23 510 case 1:
Chris@23 511 chromanorm[0] = *max_element(f4.values.begin(), f4.values.end());
Chris@23 512 chromanorm[1] = *max_element(f5.values.begin(), f5.values.end());
Chris@23 513 chromanorm[2] = max(chromanorm[0], chromanorm[1]);
Chris@23 514 break;
Chris@23 515 case 2:
Chris@23 516 for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
Chris@23 517 chromanorm[0] += *it;
Chris@23 518 }
Chris@23 519 for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
Chris@23 520 chromanorm[1] += *it;
Chris@23 521 }
Chris@23 522 for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
Chris@23 523 chromanorm[2] += *it;
Chris@23 524 }
Chris@23 525 break;
Chris@23 526 case 3:
Chris@23 527 for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
Chris@23 528 chromanorm[0] += pow(*it,2);
Chris@23 529 }
Chris@23 530 chromanorm[0] = sqrt(chromanorm[0]);
Chris@23 531 for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
Chris@23 532 chromanorm[1] += pow(*it,2);
Chris@23 533 }
Chris@23 534 chromanorm[1] = sqrt(chromanorm[1]);
Chris@23 535 for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
Chris@23 536 chromanorm[2] += pow(*it,2);
Chris@23 537 }
Chris@23 538 chromanorm[2] = sqrt(chromanorm[2]);
Chris@23 539 break;
Chris@23 540 }
Chris@23 541 if (chromanorm[0] > 0) {
Chris@91 542 for (size_t i = 0; i < f4.values.size(); i++) {
Chris@23 543 f4.values[i] /= chromanorm[0];
Chris@23 544 }
Chris@23 545 }
Chris@23 546 if (chromanorm[1] > 0) {
Chris@91 547 for (size_t i = 0; i < f5.values.size(); i++) {
Chris@23 548 f5.values[i] /= chromanorm[1];
Chris@23 549 }
Chris@23 550 }
Chris@23 551 if (chromanorm[2] > 0) {
Chris@91 552 for (size_t i = 0; i < f6.values.size(); i++) {
Chris@23 553 f6.values[i] /= chromanorm[2];
Chris@23 554 }
Chris@23 555 }
Chris@23 556 }
matthiasm@13 557
Chris@35 558 fsOut[m_outputSemiSpec].push_back(f3);
Chris@35 559 fsOut[m_outputChroma].push_back(f4);
Chris@35 560 fsOut[m_outputBassChroma].push_back(f5);
Chris@35 561 fsOut[m_outputBothChroma].push_back(f6);
matthiasm@85 562 fsOut[m_outputConsonance].push_back(consonance);
matthiasm@105 563 fsOut[m_outputMonophonicness].push_back(monophonicness);
Chris@23 564 count++;
Chris@23 565 }
Chris@23 566 cerr << "done." << endl;
matthiasm@10 567
Chris@23 568 return fsOut;
matthiasm@0 569
matthiasm@0 570 }
matthiasm@0 571