annotate NNLSChroma.cpp @ 83:3277f6cef3fe consonance

added consonance output
author Matthias Mauch <mail@matthiasmauch.net>
date Mon, 15 Nov 2010 13:19:56 +0900
parents e8ceb7d3bd4f
children 05e6b8a2fdcd
rev   line source
Chris@23 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
matthiasm@0 2
Chris@35 3 /*
Chris@35 4 NNLS-Chroma / Chordino
Chris@35 5
Chris@35 6 Audio feature extraction plugins for chromagram and chord
Chris@35 7 estimation.
Chris@35 8
Chris@35 9 Centre for Digital Music, Queen Mary University of London.
Chris@35 10 This file copyright 2008-2010 Matthias Mauch and QMUL.
Chris@35 11
Chris@35 12 This program is free software; you can redistribute it and/or
Chris@35 13 modify it under the terms of the GNU General Public License as
Chris@35 14 published by the Free Software Foundation; either version 2 of the
Chris@35 15 License, or (at your option) any later version. See the file
Chris@35 16 COPYING included with this distribution for more information.
Chris@35 17 */
Chris@35 18
matthiasm@0 19 #include "NNLSChroma.h"
Chris@27 20
Chris@27 21 #include "chromamethods.h"
Chris@27 22
Chris@27 23 #include <cstdlib>
Chris@27 24 #include <fstream>
matthiasm@0 25 #include <cmath>
matthiasm@9 26
Chris@27 27 #include <algorithm>
matthiasm@0 28
matthiasm@0 29 const bool debug_on = false;
matthiasm@0 30
matthiasm@0 31 NNLSChroma::NNLSChroma(float inputSampleRate) :
Chris@35 32 NNLSBase(inputSampleRate)
matthiasm@0 33 {
Chris@23 34 if (debug_on) cerr << "--> NNLSChroma" << endl;
matthiasm@0 35 }
matthiasm@0 36
matthiasm@0 37 NNLSChroma::~NNLSChroma()
matthiasm@0 38 {
Chris@23 39 if (debug_on) cerr << "--> ~NNLSChroma" << endl;
matthiasm@0 40 }
matthiasm@0 41
matthiasm@0 42 string
matthiasm@0 43 NNLSChroma::getIdentifier() const
matthiasm@0 44 {
Chris@23 45 if (debug_on) cerr << "--> getIdentifier" << endl;
matthiasm@46 46 return "nnls-chroma";
matthiasm@0 47 }
matthiasm@0 48
matthiasm@0 49 string
matthiasm@0 50 NNLSChroma::getName() const
matthiasm@0 51 {
Chris@23 52 if (debug_on) cerr << "--> getName" << endl;
matthiasm@0 53 return "NNLS Chroma";
matthiasm@0 54 }
matthiasm@0 55
matthiasm@0 56 string
matthiasm@0 57 NNLSChroma::getDescription() const
matthiasm@0 58 {
Chris@23 59 if (debug_on) cerr << "--> getDescription" << endl;
matthiasm@58 60 return "This plugin provides a number of features derived from a DFT-based log-frequency amplitude spectrum: some variants of the log-frequency spectrum, including a semitone spectrum derived from approximate transcription using the NNLS algorithm; and based on this semitone spectrum, different chroma features.";
matthiasm@0 61 }
matthiasm@0 62
matthiasm@0 63 NNLSChroma::OutputList
matthiasm@0 64 NNLSChroma::getOutputDescriptors() const
matthiasm@0 65 {
Chris@23 66 if (debug_on) cerr << "--> getOutputDescriptors" << endl;
matthiasm@0 67 OutputList list;
matthiasm@0 68
matthiasm@0 69 // Make chroma names for the binNames property
matthiasm@0 70 vector<string> chromanames;
matthiasm@0 71 vector<string> bothchromanames;
matthiasm@0 72 for (int iNote = 0; iNote < 24; iNote++) {
matthiasm@0 73 bothchromanames.push_back(notenames[iNote]);
matthiasm@0 74 if (iNote < 12) {
matthiasm@43 75 chromanames.push_back(notenames[iNote+12]);
matthiasm@0 76 }
matthiasm@0 77 }
matthiasm@0 78
Chris@35 79 int index = 0;
matthiasm@0 80
Chris@23 81 OutputDescriptor d1;
matthiasm@0 82 d1.identifier = "logfreqspec";
matthiasm@0 83 d1.name = "Log-Frequency Spectrum";
matthiasm@0 84 d1.description = "A Log-Frequency Spectrum (constant Q) that is obtained by cosine filter mapping.";
matthiasm@0 85 d1.unit = "";
matthiasm@0 86 d1.hasFixedBinCount = true;
matthiasm@0 87 d1.binCount = nNote;
matthiasm@0 88 d1.hasKnownExtents = false;
matthiasm@0 89 d1.isQuantized = false;
matthiasm@0 90 d1.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 91 d1.hasDuration = false;
matthiasm@0 92 d1.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 93 list.push_back(d1);
Chris@35 94 m_outputLogSpec = index++;
matthiasm@0 95
Chris@23 96 OutputDescriptor d2;
matthiasm@0 97 d2.identifier = "tunedlogfreqspec";
matthiasm@0 98 d2.name = "Tuned Log-Frequency Spectrum";
matthiasm@0 99 d2.description = "A Log-Frequency Spectrum (constant Q) that is obtained by cosine filter mapping, then its tuned using the estimated tuning frequency.";
matthiasm@0 100 d2.unit = "";
matthiasm@0 101 d2.hasFixedBinCount = true;
mail@77 102 d2.binCount = nNote;
matthiasm@0 103 d2.hasKnownExtents = false;
matthiasm@0 104 d2.isQuantized = false;
matthiasm@0 105 d2.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 106 d2.hasDuration = false;
matthiasm@0 107 d2.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 108 list.push_back(d2);
Chris@35 109 m_outputTunedSpec = index++;
matthiasm@0 110
matthiasm@0 111 OutputDescriptor d3;
matthiasm@0 112 d3.identifier = "semitonespectrum";
matthiasm@0 113 d3.name = "Semitone Spectrum";
matthiasm@0 114 d3.description = "A semitone-spaced log-frequency spectrum derived from the third-of-a-semitone-spaced tuned log-frequency spectrum.";
matthiasm@0 115 d3.unit = "";
matthiasm@0 116 d3.hasFixedBinCount = true;
matthiasm@0 117 d3.binCount = 84;
matthiasm@0 118 d3.hasKnownExtents = false;
matthiasm@0 119 d3.isQuantized = false;
matthiasm@0 120 d3.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 121 d3.hasDuration = false;
matthiasm@0 122 d3.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 123 list.push_back(d3);
Chris@35 124 m_outputSemiSpec = index++;
matthiasm@0 125
matthiasm@0 126 OutputDescriptor d4;
matthiasm@0 127 d4.identifier = "chroma";
matthiasm@0 128 d4.name = "Chromagram";
matthiasm@58 129 d4.description = "Tuning-adjusted chromagram from NNLS approximate transcription, with an emphasis on the medium note range.";
matthiasm@0 130 d4.unit = "";
matthiasm@0 131 d4.hasFixedBinCount = true;
matthiasm@0 132 d4.binCount = 12;
matthiasm@0 133 d4.binNames = chromanames;
matthiasm@0 134 d4.hasKnownExtents = false;
matthiasm@0 135 d4.isQuantized = false;
matthiasm@0 136 d4.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 137 d4.hasDuration = false;
matthiasm@0 138 d4.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 139 list.push_back(d4);
Chris@35 140 m_outputChroma = index++;
matthiasm@0 141
matthiasm@0 142 OutputDescriptor d5;
matthiasm@0 143 d5.identifier = "basschroma";
matthiasm@0 144 d5.name = "Bass Chromagram";
matthiasm@58 145 d5.description = "Tuning-adjusted bass chromagram from NNLS approximate transcription, with an emphasis on the bass note range.";
matthiasm@0 146 d5.unit = "";
matthiasm@0 147 d5.hasFixedBinCount = true;
matthiasm@0 148 d5.binCount = 12;
matthiasm@0 149 d5.binNames = chromanames;
matthiasm@0 150 d5.hasKnownExtents = false;
matthiasm@0 151 d5.isQuantized = false;
matthiasm@0 152 d5.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 153 d5.hasDuration = false;
matthiasm@0 154 d5.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 155 list.push_back(d5);
Chris@35 156 m_outputBassChroma = index++;
matthiasm@0 157
matthiasm@0 158 OutputDescriptor d6;
matthiasm@0 159 d6.identifier = "bothchroma";
matthiasm@0 160 d6.name = "Chromagram and Bass Chromagram";
matthiasm@58 161 d6.description = "Tuning-adjusted chromagram and bass chromagram (stacked on top of each other) from NNLS approximate transcription.";
matthiasm@0 162 d6.unit = "";
matthiasm@0 163 d6.hasFixedBinCount = true;
matthiasm@0 164 d6.binCount = 24;
matthiasm@0 165 d6.binNames = bothchromanames;
matthiasm@0 166 d6.hasKnownExtents = false;
matthiasm@0 167 d6.isQuantized = false;
matthiasm@0 168 d6.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 169 d6.hasDuration = false;
matthiasm@0 170 d6.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 171 list.push_back(d6);
Chris@35 172 m_outputBothChroma = index++;
matthiasm@1 173
mail@83 174 OutputDescriptor d7;
mail@83 175 d7.identifier = "consonance";
mail@83 176 d7.name = "Consonance estimate.";
mail@83 177 d7.description = "A simple consonance value based on the convolution of a consonance profile with the semitone spectrum.";
mail@83 178 d7.unit = "";
mail@83 179 d7.hasFixedBinCount = true;
mail@83 180 d7.binCount = 1;
mail@83 181 d7.hasKnownExtents = false;
mail@83 182 d7.isQuantized = false;
mail@83 183 d7.sampleType = OutputDescriptor::FixedSampleRate;
mail@83 184 d7.hasDuration = false;
mail@83 185 d7.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
mail@83 186 list.push_back(d7);
mail@83 187 m_outputConsonance = index++;
mail@83 188
matthiasm@0 189 return list;
matthiasm@0 190 }
matthiasm@0 191
matthiasm@0 192
matthiasm@0 193 bool
matthiasm@0 194 NNLSChroma::initialise(size_t channels, size_t stepSize, size_t blockSize)
matthiasm@0 195 {
Chris@23 196 if (debug_on) {
Chris@23 197 cerr << "--> initialise";
Chris@23 198 }
matthiasm@1 199
Chris@35 200 if (!NNLSBase::initialise(channels, stepSize, blockSize)) {
Chris@35 201 return false;
Chris@35 202 }
matthiasm@1 203
matthiasm@0 204 return true;
matthiasm@0 205 }
matthiasm@0 206
matthiasm@0 207 void
matthiasm@0 208 NNLSChroma::reset()
matthiasm@0 209 {
Chris@23 210 if (debug_on) cerr << "--> reset";
Chris@35 211 NNLSBase::reset();
matthiasm@0 212 }
matthiasm@0 213
matthiasm@0 214 NNLSChroma::FeatureSet
matthiasm@0 215 NNLSChroma::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
matthiasm@0 216 {
Chris@23 217 if (debug_on) cerr << "--> process" << endl;
Chris@35 218
Chris@35 219 NNLSBase::baseProcess(inputBuffers, timestamp);
matthiasm@0 220
Chris@23 221 FeatureSet fs;
Chris@35 222 fs[m_outputLogSpec].push_back(m_logSpectrum[m_logSpectrum.size()-1]);
Chris@23 223 return fs;
matthiasm@0 224 }
matthiasm@0 225
matthiasm@0 226 NNLSChroma::FeatureSet
matthiasm@0 227 NNLSChroma::getRemainingFeatures()
matthiasm@0 228 {
Chris@23 229 if (debug_on) cerr << "--> getRemainingFeatures" << endl;
Chris@23 230 FeatureSet fsOut;
Chris@35 231 if (m_logSpectrum.size() == 0) return fsOut;
Chris@23 232 //
Chris@23 233 /** Calculate Tuning
Chris@23 234 calculate tuning from (using the angle of the complex number defined by the
Chris@23 235 cumulative mean real and imag values)
Chris@23 236 **/
mail@80 237 float meanTuningImag = 0;
mail@80 238 float meanTuningReal = 0;
mail@80 239 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 240 meanTuningReal += m_meanTunings[iBPS] * cosvalues[iBPS];
mail@80 241 meanTuningImag += m_meanTunings[iBPS] * sinvalues[iBPS];
mail@80 242 }
Chris@23 243 float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
Chris@23 244 float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
Chris@23 245 int intShift = floor(normalisedtuning * 3);
mail@80 246 float floatShift = normalisedtuning * 3 - intShift; // floatShift is a really bad name for this
matthiasm@1 247
Chris@23 248 char buffer0 [50];
matthiasm@1 249
Chris@23 250 sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
matthiasm@1 251
Chris@23 252 // cerr << "normalisedtuning: " << normalisedtuning << '\n';
matthiasm@1 253
Chris@23 254 /** Tune Log-Frequency Spectrogram
Chris@23 255 calculate a tuned log-frequency spectrogram (f2): use the tuning estimated above (kinda f0) to
Chris@23 256 perform linear interpolation on the existing log-frequency spectrogram (kinda f1).
Chris@23 257 **/
Chris@23 258 cerr << endl << "[NNLS Chroma Plugin] Tuning Log-Frequency Spectrogram ... ";
matthiasm@13 259
Chris@23 260 float tempValue = 0;
Chris@23 261 float dbThreshold = 0; // relative to the background spectrum
Chris@23 262 float thresh = pow(10,dbThreshold/20);
Chris@23 263 // cerr << "tune local ? " << m_tuneLocal << endl;
Chris@23 264 int count = 0;
mail@77 265
matthiasm@1 266
Chris@35 267 for (FeatureList::iterator i = m_logSpectrum.begin(); i != m_logSpectrum.end(); ++i) {
Chris@23 268 Feature f1 = *i;
Chris@23 269 Feature f2; // tuned log-frequency spectrum
Chris@23 270 f2.hasTimestamp = true;
Chris@23 271 f2.timestamp = f1.timestamp;
Chris@23 272 f2.values.push_back(0.0); f2.values.push_back(0.0); // set lower edge to zero
matthiasm@1 273
Chris@23 274 if (m_tuneLocal) {
Chris@23 275 intShift = floor(m_localTuning[count] * 3);
mail@80 276 floatShift = m_localTuning[count] * 3 - intShift; // floatShift is a really bad name for this
Chris@23 277 }
matthiasm@1 278
mail@80 279 // cerr << intShift << " " << floatShift << endl;
matthiasm@1 280
Chris@23 281 for (unsigned k = 2; k < f1.values.size() - 3; ++k) { // interpolate all inner bins
mail@80 282 tempValue = f1.values[k + intShift] * (1-floatShift) + f1.values[k+intShift+1] * floatShift;
Chris@23 283 f2.values.push_back(tempValue);
Chris@23 284 }
matthiasm@1 285
Chris@23 286 f2.values.push_back(0.0); f2.values.push_back(0.0); f2.values.push_back(0.0); // upper edge
mail@77 287
Chris@23 288 vector<float> runningmean = SpecialConvolution(f2.values,hw);
Chris@23 289 vector<float> runningstd;
mail@77 290 for (int i = 0; i < nNote; i++) { // first step: squared values into vector (variance)
Chris@23 291 runningstd.push_back((f2.values[i] - runningmean[i]) * (f2.values[i] - runningmean[i]));
Chris@23 292 }
Chris@23 293 runningstd = SpecialConvolution(runningstd,hw); // second step convolve
mail@77 294 for (int i = 0; i < nNote; i++) {
Chris@23 295 runningstd[i] = sqrt(runningstd[i]); // square root to finally have running std
Chris@23 296 if (runningstd[i] > 0) {
Chris@23 297 // f2.values[i] = (f2.values[i] / runningmean[i]) > thresh ?
mail@41 298 // (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
Chris@23 299 f2.values[i] = (f2.values[i] - runningmean[i]) > 0 ?
mail@41 300 (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
Chris@23 301 }
Chris@23 302 if (f2.values[i] < 0) {
Chris@23 303 cerr << "ERROR: negative value in logfreq spectrum" << endl;
Chris@23 304 }
Chris@23 305 }
Chris@35 306 fsOut[m_outputTunedSpec].push_back(f2);
Chris@23 307 count++;
Chris@23 308 }
Chris@23 309 cerr << "done." << endl;
matthiasm@1 310
Chris@23 311 /** Semitone spectrum and chromagrams
Chris@23 312 Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum above. the spectrum
Chris@23 313 is inferred using a non-negative least squares algorithm.
Chris@23 314 Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
Chris@23 315 bass and treble stacked onto each other).
Chris@23 316 **/
matthiasm@42 317 if (m_useNNLS == 0) {
Chris@23 318 cerr << "[NNLS Chroma Plugin] Mapping to semitone spectrum and chroma ... ";
Chris@23 319 } else {
Chris@23 320 cerr << "[NNLS Chroma Plugin] Performing NNLS and mapping to chroma ... ";
Chris@23 321 }
matthiasm@13 322
matthiasm@1 323
Chris@23 324 vector<float> oldchroma = vector<float>(12,0);
Chris@23 325 vector<float> oldbasschroma = vector<float>(12,0);
Chris@23 326 count = 0;
matthiasm@9 327
Chris@38 328 for (FeatureList::iterator it = fsOut[m_outputTunedSpec].begin(); it != fsOut[m_outputTunedSpec].end(); ++it) {
Chris@23 329 Feature f2 = *it; // logfreq spectrum
Chris@23 330 Feature f3; // semitone spectrum
Chris@23 331 Feature f4; // treble chromagram
Chris@23 332 Feature f5; // bass chromagram
Chris@23 333 Feature f6; // treble and bass chromagram
matthiasm@1 334
Chris@23 335 f3.hasTimestamp = true;
Chris@23 336 f3.timestamp = f2.timestamp;
matthiasm@1 337
Chris@23 338 f4.hasTimestamp = true;
Chris@23 339 f4.timestamp = f2.timestamp;
matthiasm@1 340
Chris@23 341 f5.hasTimestamp = true;
Chris@23 342 f5.timestamp = f2.timestamp;
matthiasm@1 343
Chris@23 344 f6.hasTimestamp = true;
Chris@23 345 f6.timestamp = f2.timestamp;
matthiasm@1 346
mail@77 347 float b[nNote];
matthiasm@1 348
Chris@23 349 bool some_b_greater_zero = false;
Chris@23 350 float sumb = 0;
mail@77 351 for (int i = 0; i < nNote; i++) {
mail@77 352 // b[i] = m_dict[(nNote * count + i) % (nNote * 84)];
Chris@23 353 b[i] = f2.values[i];
Chris@23 354 sumb += b[i];
Chris@23 355 if (b[i] > 0) {
Chris@23 356 some_b_greater_zero = true;
Chris@23 357 }
Chris@23 358 }
matthiasm@1 359
Chris@23 360 // here's where the non-negative least squares algorithm calculates the note activation x
matthiasm@1 361
Chris@23 362 vector<float> chroma = vector<float>(12, 0);
Chris@23 363 vector<float> basschroma = vector<float>(12, 0);
Chris@23 364 float currval;
Chris@23 365 unsigned iSemitone = 0;
matthiasm@1 366
Chris@23 367 if (some_b_greater_zero) {
matthiasm@42 368 if (m_useNNLS == 0) {
mail@80 369 for (unsigned iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
Chris@23 370 currval = 0;
mail@80 371 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
mail@80 372 currval += b[iNote + iBPS] * (1-abs(iBPS*1.0/(nBPS/2+1)));
mail@80 373 }
Chris@23 374 f3.values.push_back(currval);
Chris@23 375 chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
Chris@23 376 basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
Chris@23 377 iSemitone++;
Chris@23 378 }
matthiasm@1 379
Chris@23 380 } else {
Chris@35 381 float x[84+1000];
Chris@23 382 for (int i = 1; i < 1084; ++i) x[i] = 1.0;
Chris@23 383 vector<int> signifIndex;
Chris@23 384 int index=0;
Chris@23 385 sumb /= 84.0;
mail@80 386 for (unsigned iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
Chris@23 387 float currval = 0;
mail@80 388 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
mail@80 389 currval += b[iNote + iBPS];
mail@80 390 }
Chris@23 391 if (currval > 0) signifIndex.push_back(index);
Chris@23 392 f3.values.push_back(0); // fill the values, change later
Chris@23 393 index++;
Chris@23 394 }
Chris@35 395 float rnorm;
Chris@35 396 float w[84+1000];
Chris@35 397 float zz[84+1000];
Chris@23 398 int indx[84+1000];
Chris@23 399 int mode;
mail@77 400 int dictsize = nNote*signifIndex.size();
Chris@23 401 // cerr << "dictsize is " << dictsize << "and values size" << f3.values.size()<< endl;
Chris@35 402 float *curr_dict = new float[dictsize];
Chris@23 403 for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
mail@77 404 for (unsigned iBin = 0; iBin < nNote; iBin++) {
mail@77 405 curr_dict[iNote * nNote + iBin] = 1.0 * m_dict[signifIndex[iNote] * nNote + iBin];
Chris@23 406 }
Chris@23 407 }
Chris@35 408 nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode);
Chris@23 409 delete [] curr_dict;
Chris@23 410 for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
Chris@23 411 f3.values[signifIndex[iNote]] = x[iNote];
Chris@23 412 // cerr << mode << endl;
Chris@23 413 chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
Chris@23 414 basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
Chris@23 415 }
Chris@23 416 }
matthiasm@79 417 } else {
matthiasm@79 418 for (int i = 0; i < 84; ++i) f3.values.push_back(0);
Chris@23 419 }
matthiasm@13 420
Chris@23 421 f4.values = chroma;
Chris@23 422 f5.values = basschroma;
Chris@23 423 chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end()); // just stack the both chromas
Chris@23 424 f6.values = chroma;
matthiasm@1 425
Chris@23 426 if (m_doNormalizeChroma > 0) {
Chris@23 427 vector<float> chromanorm = vector<float>(3,0);
Chris@23 428 switch (int(m_doNormalizeChroma)) {
Chris@23 429 case 0: // should never end up here
Chris@23 430 break;
Chris@23 431 case 1:
Chris@23 432 chromanorm[0] = *max_element(f4.values.begin(), f4.values.end());
Chris@23 433 chromanorm[1] = *max_element(f5.values.begin(), f5.values.end());
Chris@23 434 chromanorm[2] = max(chromanorm[0], chromanorm[1]);
Chris@23 435 break;
Chris@23 436 case 2:
Chris@23 437 for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
Chris@23 438 chromanorm[0] += *it;
Chris@23 439 }
Chris@23 440 for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
Chris@23 441 chromanorm[1] += *it;
Chris@23 442 }
Chris@23 443 for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
Chris@23 444 chromanorm[2] += *it;
Chris@23 445 }
Chris@23 446 break;
Chris@23 447 case 3:
Chris@23 448 for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
Chris@23 449 chromanorm[0] += pow(*it,2);
Chris@23 450 }
Chris@23 451 chromanorm[0] = sqrt(chromanorm[0]);
Chris@23 452 for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
Chris@23 453 chromanorm[1] += pow(*it,2);
Chris@23 454 }
Chris@23 455 chromanorm[1] = sqrt(chromanorm[1]);
Chris@23 456 for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
Chris@23 457 chromanorm[2] += pow(*it,2);
Chris@23 458 }
Chris@23 459 chromanorm[2] = sqrt(chromanorm[2]);
Chris@23 460 break;
Chris@23 461 }
Chris@23 462 if (chromanorm[0] > 0) {
Chris@23 463 for (int i = 0; i < f4.values.size(); i++) {
Chris@23 464 f4.values[i] /= chromanorm[0];
Chris@23 465 }
Chris@23 466 }
Chris@23 467 if (chromanorm[1] > 0) {
Chris@23 468 for (int i = 0; i < f5.values.size(); i++) {
Chris@23 469 f5.values[i] /= chromanorm[1];
Chris@23 470 }
Chris@23 471 }
Chris@23 472 if (chromanorm[2] > 0) {
Chris@23 473 for (int i = 0; i < f6.values.size(); i++) {
Chris@23 474 f6.values[i] /= chromanorm[2];
Chris@23 475 }
Chris@23 476 }
Chris@23 477 }
matthiasm@13 478
Chris@35 479 fsOut[m_outputSemiSpec].push_back(f3);
Chris@35 480 fsOut[m_outputChroma].push_back(f4);
Chris@35 481 fsOut[m_outputBassChroma].push_back(f5);
Chris@35 482 fsOut[m_outputBothChroma].push_back(f6);
Chris@23 483 count++;
Chris@23 484 }
Chris@23 485 cerr << "done." << endl;
matthiasm@10 486
Chris@23 487 return fsOut;
matthiasm@0 488
matthiasm@0 489 }
matthiasm@0 490