annotate parameterStore/MAPparamsNormal.m @ 37:771a643d5c29

mainly nmanuals
author Ray Meddis <rmeddis@essex.ac.uk>
date Thu, 06 Oct 2011 15:43:20 +0100
parents 25d53244d5c8
children c2204b18f4a2
rev   line source
rmeddis@0 1 function method=MAPparamsNormal ...
rmeddis@26 2 (BFlist, sampleRate, showParams, paramChanges)
rmeddis@0 3 % MAPparams<> establishes a complete set of MAP parameters
rmeddis@35 4 % Parameter file names must be of the form <MAPparams><name>
rmeddis@0 5 %
rmeddis@35 6 % Input arguments
rmeddis@0 7 % BFlist (optional) specifies the desired list of channel BFs
rmeddis@0 8 % otherwise defaults set below
rmeddis@0 9 % sampleRate (optional), default is 50000.
rmeddis@0 10 % showParams (optional) =1 prints out the complete set of parameters
rmeddis@35 11 % Output argument
rmeddis@0 12 % method passes a miscelleny of values
rmeddis@35 13 % the use of 'method' is being phased out. use globals
rmeddis@0 14
rmeddis@26 15 global inputStimulusParams OMEParams DRNLParams IHC_cilia_RPParams
rmeddis@35 16 global IHCpreSynapseParams AN_IHCsynapseParams
rmeddis@0 17 global MacGregorParams MacGregorMultiParams filteredSACFParams
rmeddis@35 18 global experiment % used only by calls from multiThreshold
rmeddis@35 19 % global IHC_VResp_VivoParams
rmeddis@0 20
rmeddis@0 21 currentFile=mfilename; % i.e. the name of this mfile
rmeddis@0 22 method.parameterSource=currentFile(10:end); % for the record
rmeddis@0 23
rmeddis@0 24 efferentDelay=0.010;
rmeddis@0 25 method.segmentDuration=efferentDelay;
rmeddis@0 26
rmeddis@0 27 if nargin<3, showParams=0; end
rmeddis@0 28 if nargin<2, sampleRate=50000; end
rmeddis@0 29 if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default
rmeddis@0 30 lowestBF=250; highestBF= 8000; numChannels=21;
rmeddis@0 31 % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000
rmeddis@0 32 BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels));
rmeddis@0 33 end
rmeddis@35 34 % BFlist=1000; % single channel option
rmeddis@0 35
rmeddis@0 36 % preserve for backward campatibility
rmeddis@0 37 method.nonlinCF=BFlist;
rmeddis@0 38 method.dt=1/sampleRate;
rmeddis@0 39
rmeddis@0 40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@0 41 % set model parameters
rmeddis@0 42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@0 43
rmeddis@0 44 %% #1 inputStimulus
rmeddis@0 45 inputStimulusParams=[];
rmeddis@0 46 inputStimulusParams.sampleRate= sampleRate;
rmeddis@0 47
rmeddis@0 48 %% #2 outerMiddleEar
rmeddis@0 49 OMEParams=[]; % clear the structure first
rmeddis@0 50 % outer ear resonances band pass filter [gain lp order hp]
rmeddis@0 51 OMEParams.externalResonanceFilters= [ 10 1 1000 4000];
rmeddis@0 52
rmeddis@0 53 % highpass stapes filter
rmeddis@0 54 % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL)
rmeddis@0 55 OMEParams.OMEstapesLPcutoff= 1000;
rmeddis@0 56 OMEParams.stapesScalar= 45e-9;
rmeddis@0 57
rmeddis@35 58 % Acoustic reflex: maximum attenuation should be around 25 dB (Price, 1966)
rmeddis@0 59 % i.e. a minimum ratio of 0.056.
rmeddis@16 60 % 'spikes' model: AR based on brainstem spiking activity (LSR)
rmeddis@35 61 OMEParams.rateToAttenuationFactor=0.008; % * N(all ICspikes)
rmeddis@35 62 % OMEParams.rateToAttenuationFactor=0; % i.e. no AR
rmeddis@16 63
rmeddis@16 64 % 'probability model': Ar based on AN firing probabilities (LSR)
rmeddis@35 65 OMEParams.rateToAttenuationFactorProb=0.006; % * N(all ANrates)
rmeddis@35 66 % OMEParams.rateToAttenuationFactorProb=0; % i.e. no AR
rmeddis@16 67
rmeddis@0 68 % asymptote should be around 100-200 ms
rmeddis@35 69 OMEParams.ARtau=.250; % AR smoothing function 250 ms fits Hung and Dallos
rmeddis@0 70 % delay must be longer than the segment length
rmeddis@0 71 OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency
rmeddis@34 72 OMEParams.ARrateThreshold=40;
rmeddis@0 73
rmeddis@0 74 %% #3 DRNL
rmeddis@0 75 DRNLParams=[]; % clear the structure first
rmeddis@35 76 % DRNLParams.BFlist=BFlist;
rmeddis@0 77
rmeddis@35 78 % *** DRNL nonlinear path
rmeddis@35 79 % broken stick compression
rmeddis@35 80 DRNLParams.a=5e4; % DRNL.a=0 means no OHCs (no nonlinear path)
rmeddis@35 81 DRNLParams.c=.2; % compression exponent
rmeddis@35 82 DRNLParams.CtBMdB = 10; %Compression threshold dB re 10e-9 m displacement
rmeddis@0 83
rmeddis@35 84 % filters
rmeddis@35 85 DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters
rmeddis@0 86 DRNLParams.nonlinCFs=BFlist;
rmeddis@35 87 p=0.2895; q=250; % human (% p=0.14; q=366; % cat)
rmeddis@0 88 DRNLParams.nlBWs= p * BFlist + q;
rmeddis@0 89 DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only
rmeddis@0 90
rmeddis@35 91 % *** DRNL linear path:
rmeddis@35 92 DRNLParams.g=200; % linear path gain factor
rmeddis@35 93 DRNLParams.linOrder=3; % order of linear gammatone filters
rmeddis@0 94 % linCF is not necessarily the same as nonlinCF
rmeddis@0 95 minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz
rmeddis@0 96 DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist;
rmeddis@35 97 % bandwidths (linear)
rmeddis@0 98 minLinBW=100; coeffLinBW=0.6531;
rmeddis@0 99 DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters
rmeddis@0 100
rmeddis@35 101 % *** DRNL MOC efferents
rmeddis@0 102 DRNLParams.MOCdelay = efferentDelay; % must be < segment length!
rmeddis@35 103 DRNLParams.minMOCattenuationdB=-30;
rmeddis@23 104
rmeddis@16 105 % 'spikes' model: MOC based on brainstem spiking activity (HSR)
rmeddis@35 106 DRNLParams.MOCtau =.025; % smoothing for MOC
rmeddis@35 107 DRNLParams.rateToAttenuationFactor = .00635; % strength of MOC
rmeddis@35 108 % DRNLParams.rateToAttenuationFactor = 0; % strength of MOC
rmeddis@35 109
rmeddis@23 110 % 'probability' model: MOC based on AN spiking activity (HSR)
rmeddis@35 111 DRNLParams.MOCtauProb =.285; % smoothing for MOC
rmeddis@35 112 DRNLParams.rateToAttenuationFactorProb = 0.0075; % strength of MOC
rmeddis@23 113 % DRNLParams.rateToAttenuationFactorProb = .0; % strength of MOC
rmeddis@34 114 DRNLParams.MOCrateThresholdProb =50; % spikes/s probability only
rmeddis@0 115
rmeddis@0 116
rmeddis@0 117 %% #4 IHC_cilia_RPParams
rmeddis@0 118 IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity
rmeddis@28 119 IHC_cilia_RPParams.C= 0.03; % 0.1 scalar (C_cilia )
rmeddis@0 120 IHC_cilia_RPParams.u0= 5e-9;
rmeddis@0 121 IHC_cilia_RPParams.s0= 30e-9;
rmeddis@0 122 IHC_cilia_RPParams.u1= 1e-9;
rmeddis@0 123 IHC_cilia_RPParams.s1= 1e-9;
rmeddis@0 124
rmeddis@28 125 IHC_cilia_RPParams.Gmax= 6e-9; % 2.5e-9 maximum conductance (Siemens)
rmeddis@8 126 IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance
rmeddis@28 127 IHC_cilia_RPParams.Ga= .8e-9; % 4.3e-9 fixed apical membrane conductance
rmeddis@0 128
rmeddis@0 129 % #5 IHC_RP
rmeddis@0 130 IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F)
rmeddis@28 131 % IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F)
rmeddis@0 132 IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V)
rmeddis@0 133
rmeddis@0 134 IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S)
rmeddis@0 135 IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential
rmeddis@0 136 IHC_cilia_RPParams.Rpc= 0.04; % combined resistances
rmeddis@0 137
rmeddis@0 138
rmeddis@0 139 %% #5 IHCpreSynapse
rmeddis@0 140 IHCpreSynapseParams=[];
rmeddis@0 141 IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance
rmeddis@35 142 % IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance
rmeddis@0 143 IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential
rmeddis@0 144 IHCpreSynapseParams.beta= 400; % determine Ca channel opening
rmeddis@0 145 IHCpreSynapseParams.gamma= 100; % determine Ca channel opening
rmeddis@0 146 IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms
rmeddis@0 147 IHCpreSynapseParams.power= 3;
rmeddis@0 148 % reminder: changing z has a strong effect on HF thresholds (like Et)
rmeddis@0 149 IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate
rmeddis@0 150
rmeddis@35 151 LSRtauCa=40e-6; HSRtauCa=80e-6; % seconds
rmeddis@35 152 % IHCpreSynapseParams.tauCa= [15e-6 80e-6]; %LSR and HSR fiber
rmeddis@0 153 IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber
rmeddis@0 154
rmeddis@0 155 %% #6 AN_IHCsynapse
rmeddis@35 156 AN_IHCsynapseParams=[]; % clear the structure first
rmeddis@35 157 % number of AN fibers at each BF (used only for spike generation)
rmeddis@35 158 AN_IHCsynapseParams.numFibers= 100;
rmeddis@35 159 % absolute refractory period. Relative refractory period is the same.
rmeddis@35 160 AN_IHCsynapseParams.refractory_period= 0.00075;
rmeddis@35 161 AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike
rmeddis@35 162 AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes.
rmeddis@35 163
rmeddis@0 164 % c=kym/(y(l+r)+kl) (spontaneous rate)
rmeddis@0 165 % c=(approx) ym/l (saturated rate)
rmeddis@0 166 AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse
rmeddis@0 167 AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate
rmeddis@0 168 AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate
rmeddis@0 169
rmeddis@0 170 AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store
rmeddis@0 171 AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store
rmeddis@0 172
rmeddis@0 173 % reduce l to increase saturated rate
rmeddis@0 174 AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft
rmeddis@0 175 AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft
rmeddis@0 176
rmeddis@0 177 AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell
rmeddis@0 178 % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell
rmeddis@0 179
rmeddis@15 180
rmeddis@0 181 %% #7 MacGregorMulti (first order brainstem neurons)
rmeddis@0 182 MacGregorMultiParams=[];
rmeddis@0 183 MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose
rmeddis@0 184 switch MacGregorMultiType
rmeddis@0 185 case 'primary-like'
rmeddis@0 186 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@0 187 MacGregorMultiParams.type = 'primary-like cell';
rmeddis@0 188 MacGregorMultiParams.fibersPerNeuron=4; % N input fibers
rmeddis@0 189 MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter
rmeddis@0 190 MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike
rmeddis@0 191 MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens)
rmeddis@0 192 MacGregorMultiParams.tauM=5e-4; % membrane time constant (s)
rmeddis@0 193 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 194 MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S
rmeddis@0 195 MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s)
rmeddis@0 196 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 197 MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V)
rmeddis@0 198 MacGregorMultiParams.tauTh= 0.015; % variable threshold tau
rmeddis@0 199 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@0 200 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@0 201
rmeddis@0 202 case 'chopper'
rmeddis@0 203 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@0 204 MacGregorMultiParams.type = 'chopper cell';
rmeddis@0 205 MacGregorMultiParams.fibersPerNeuron=10; % N input fibers
rmeddis@0 206
rmeddis@0 207 MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter
rmeddis@8 208 MacGregorMultiParams.currentPerSpike=35e-9; % *per spike
rmeddis@28 209 % MacGregorMultiParams.currentPerSpike=30e-9; % *per spike
rmeddis@0 210
rmeddis@0 211 MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens)
rmeddis@0 212 MacGregorMultiParams.tauM=0.002; % membrane time constant (s)
rmeddis@0 213 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 214 MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@15 215 MacGregorMultiParams.tauGk= 0.0005;% K+ conductance tau (s)
rmeddis@0 216 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 217 MacGregorMultiParams.c= 0; % threshold shift on spike, (V)
rmeddis@0 218 MacGregorMultiParams.tauTh= 0.02; % variable threshold tau
rmeddis@0 219 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@0 220 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@0 221 MacGregorMultiParams.PSTHbinWidth= 1e-4;
rmeddis@0 222 end
rmeddis@0 223
rmeddis@0 224 %% #8 MacGregor (second-order neuron). Only one per channel
rmeddis@0 225 MacGregorParams=[]; % clear the structure first
rmeddis@0 226 MacGregorParams.type = 'chopper cell';
rmeddis@0 227 MacGregorParams.fibersPerNeuron=10; % N input fibers
rmeddis@0 228 MacGregorParams.dendriteLPfreq=100; % dendritic filter
rmeddis@0 229 MacGregorParams.currentPerSpike=120e-9;% *(A) per spike
rmeddis@28 230 MacGregorParams.currentPerSpike=40e-9;% *(A) per spike
rmeddis@0 231
rmeddis@0 232 MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens)
rmeddis@0 233 MacGregorParams.tauM=0.002; % membrane time constant (s)
rmeddis@0 234 MacGregorParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 235 MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@35 236 MacGregorParams.tauGk= 0.0012; % K+ conductance tau (s)
rmeddis@0 237 MacGregorParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 238 MacGregorParams.c= 0; % threshold shift on spike, (V)
rmeddis@0 239 MacGregorParams.tauTh= 0.02; % variable threshold tau
rmeddis@0 240 MacGregorParams.Er=-0.06; % resting potential (V)
rmeddis@0 241 MacGregorParams.Eb=0.06; % spike height (V)
rmeddis@0 242 MacGregorParams.debugging=0; % (special)
rmeddis@0 243 % wideband accepts input from all channels (of same fiber type)
rmeddis@0 244 % use wideband to create inhibitory units
rmeddis@0 245 MacGregorParams.wideband=0; % special for wideband units
rmeddis@0 246 % MacGregorParams.saveAllData=0;
rmeddis@0 247
rmeddis@0 248 %% #9 filteredSACF
rmeddis@0 249 minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags
rmeddis@0 250 pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches));
rmeddis@0 251 filteredSACFParams.lags=1./pitches; % autocorrelation lags vector
rmeddis@0 252 filteredSACFParams.acfTau= .003; % time constant of running ACF
rmeddis@0 253 filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF
rmeddis@0 254 filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs
rmeddis@0 255 filteredSACFParams.plotACFs=0; % special plot (see code)
rmeddis@0 256 % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags
rmeddis@0 257 filteredSACFParams.lagsProcedure= 'useAllLags';
rmeddis@0 258 % filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights';
rmeddis@0 259 % filteredSACFParams.lagsProcedure= 'omitShortLags';
rmeddis@0 260 filteredSACFParams.criterionForOmittingLags=3;
rmeddis@0 261
rmeddis@0 262 % checks
rmeddis@0 263 if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron
rmeddis@0 264 error('MacGregorMulti: too few input fibers for input to MacG unit')
rmeddis@0 265 end
rmeddis@0 266
rmeddis@0 267
rmeddis@26 268 %% now accept last minute parameter changes required by the calling program
rmeddis@26 269 % paramChanges
rmeddis@26 270 if nargin>3 && ~isempty(paramChanges)
rmeddis@35 271 if ~iscellstr(paramChanges)
rmeddis@35 272 error(['paramChanges error: paramChanges not a cell array'])
rmeddis@35 273 end
rmeddis@35 274
rmeddis@26 275 nChanges=length(paramChanges);
rmeddis@26 276 for idx=1:nChanges
rmeddis@35 277 x=paramChanges{idx};
rmeddis@35 278 x=deblank(x);
rmeddis@35 279 if ~isempty(x)
rmeddis@35 280 if ~strcmp(x(end),';')
rmeddis@35 281 error(['paramChanges error (terminate with semicolon) ' x])
rmeddis@35 282 end
rmeddis@35 283 st=strtrim(x(1:strfind(x,'.')-1));
rmeddis@35 284 fld=strtrim(x(strfind(x,'.')+1:strfind(x,'=')-1));
rmeddis@35 285 value=x(strfind(x,'=')+1:end);
rmeddis@35 286 if isempty(st) || isempty(fld) || isempty(value)
rmeddis@35 287 error(['paramChanges error:' x])
rmeddis@35 288 end
rmeddis@35 289
rmeddis@35 290 x1=eval(['isstruct(' st ')']);
rmeddis@35 291 cmd=['isfield(' st ',''' fld ''')'];
rmeddis@35 292 x2=eval(cmd);
rmeddis@35 293 if ~(x1*x2)
rmeddis@35 294 error(['paramChanges error:' x])
rmeddis@35 295 end
rmeddis@35 296 end
rmeddis@35 297
rmeddis@35 298 % no problems so go ahead
rmeddis@26 299 eval(paramChanges{idx})
rmeddis@26 300 end
rmeddis@26 301 end
rmeddis@26 302
rmeddis@26 303
rmeddis@0 304 %% write all parameters to the command window
rmeddis@0 305 % showParams is currently set at the top of htis function
rmeddis@0 306 if showParams
rmeddis@0 307 fprintf('\n %%%%%%%%\n')
rmeddis@0 308 fprintf('\n%s\n', method.parameterSource)
rmeddis@0 309 fprintf('\n')
rmeddis@0 310 nm=UTIL_paramsList(whos);
rmeddis@0 311 for i=1:length(nm)
rmeddis@0 312 % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')'])
rmeddis@0 313 if ~strcmp(nm(i), 'method')
rmeddis@0 314 eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)'])
rmeddis@0 315 end
rmeddis@0 316 end
rmeddis@0 317
rmeddis@26 318 % highlight parameter changes made locally
rmeddis@26 319 if nargin>3 && ~isempty(paramChanges)
rmeddis@26 320 fprintf('\n Local parameter changes:\n')
rmeddis@26 321 for i=1:length(paramChanges)
rmeddis@26 322 disp(paramChanges{i})
rmeddis@26 323 end
rmeddis@0 324 end
rmeddis@0 325 end
rmeddis@0 326
rmeddis@26 327 % for backward compatibility
rmeddis@26 328 experiment.comparisonData=[];