rmeddis@0
|
1 function method=MAPparamsNormal ...
|
rmeddis@26
|
2 (BFlist, sampleRate, showParams, paramChanges)
|
rmeddis@0
|
3 % MAPparams<> establishes a complete set of MAP parameters
|
rmeddis@0
|
4 % Parameter file names must be of the form <MAPparams> <name>
|
rmeddis@0
|
5 %
|
rmeddis@0
|
6 % input arguments
|
rmeddis@0
|
7 % BFlist (optional) specifies the desired list of channel BFs
|
rmeddis@0
|
8 % otherwise defaults set below
|
rmeddis@0
|
9 % sampleRate (optional), default is 50000.
|
rmeddis@0
|
10 % showParams (optional) =1 prints out the complete set of parameters
|
rmeddis@0
|
11 % output argument
|
rmeddis@0
|
12 % method passes a miscelleny of values
|
rmeddis@0
|
13
|
rmeddis@26
|
14 global inputStimulusParams OMEParams DRNLParams IHC_cilia_RPParams
|
rmeddis@0
|
15 global IHC_VResp_VivoParams IHCpreSynapseParams AN_IHCsynapseParams
|
rmeddis@0
|
16 global MacGregorParams MacGregorMultiParams filteredSACFParams
|
rmeddis@0
|
17 global experiment % used by calls from multiThreshold only
|
rmeddis@26
|
18
|
rmeddis@0
|
19
|
rmeddis@0
|
20 currentFile=mfilename; % i.e. the name of this mfile
|
rmeddis@0
|
21 method.parameterSource=currentFile(10:end); % for the record
|
rmeddis@0
|
22
|
rmeddis@0
|
23 efferentDelay=0.010;
|
rmeddis@0
|
24 method.segmentDuration=efferentDelay;
|
rmeddis@0
|
25
|
rmeddis@0
|
26 if nargin<3, showParams=0; end
|
rmeddis@0
|
27 if nargin<2, sampleRate=50000; end
|
rmeddis@0
|
28 if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default
|
rmeddis@0
|
29 lowestBF=250; highestBF= 8000; numChannels=21;
|
rmeddis@0
|
30 % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000
|
rmeddis@0
|
31 BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels));
|
rmeddis@0
|
32 end
|
rmeddis@0
|
33 % BFlist=1000;
|
rmeddis@0
|
34
|
rmeddis@0
|
35 % preserve for backward campatibility
|
rmeddis@0
|
36 method.nonlinCF=BFlist;
|
rmeddis@0
|
37 method.dt=1/sampleRate;
|
rmeddis@0
|
38
|
rmeddis@0
|
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
rmeddis@0
|
40 % set model parameters
|
rmeddis@0
|
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
rmeddis@0
|
42
|
rmeddis@0
|
43 %% #1 inputStimulus
|
rmeddis@0
|
44 inputStimulusParams=[];
|
rmeddis@0
|
45 inputStimulusParams.sampleRate= sampleRate;
|
rmeddis@0
|
46
|
rmeddis@0
|
47 %% #2 outerMiddleEar
|
rmeddis@0
|
48 OMEParams=[]; % clear the structure first
|
rmeddis@0
|
49 % outer ear resonances band pass filter [gain lp order hp]
|
rmeddis@0
|
50 OMEParams.externalResonanceFilters= [ 10 1 1000 4000];
|
rmeddis@0
|
51
|
rmeddis@0
|
52 % highpass stapes filter
|
rmeddis@0
|
53 % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL)
|
rmeddis@0
|
54 OMEParams.OMEstapesLPcutoff= 1000;
|
rmeddis@0
|
55 OMEParams.stapesScalar= 45e-9;
|
rmeddis@0
|
56
|
rmeddis@0
|
57 % Acoustic reflex: maximum attenuation should be around 25 dB Price (1966)
|
rmeddis@0
|
58 % i.e. a minimum ratio of 0.056.
|
rmeddis@16
|
59 % 'spikes' model: AR based on brainstem spiking activity (LSR)
|
rmeddis@23
|
60 OMEParams.rateToAttenuationFactor=0.006; % * N(all ICspikes)
|
rmeddis@26
|
61 % OMEParams.rateToAttenuationFactor=0; % * N(all ICspikes)
|
rmeddis@16
|
62
|
rmeddis@16
|
63 % 'probability model': Ar based on AN firing probabilities (LSR)
|
rmeddis@24
|
64 OMEParams.rateToAttenuationFactorProb=0.01;% * N(all ANrates)
|
rmeddis@26
|
65 % OMEParams.rateToAttenuationFactorProb=0;% * N(all ANrates)
|
rmeddis@16
|
66
|
rmeddis@0
|
67 % asymptote should be around 100-200 ms
|
rmeddis@0
|
68 OMEParams.ARtau=.05; % AR smoothing function
|
rmeddis@0
|
69 % delay must be longer than the segment length
|
rmeddis@0
|
70 OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency
|
rmeddis@0
|
71 OMEParams.ARrateThreshold=0;
|
rmeddis@0
|
72
|
rmeddis@0
|
73 %% #3 DRNL
|
rmeddis@0
|
74 DRNLParams=[]; % clear the structure first
|
rmeddis@0
|
75 DRNLParams.BFlist=BFlist;
|
rmeddis@0
|
76
|
rmeddis@0
|
77 % DRNL nonlinear path
|
rmeddis@23
|
78 DRNLParams.a=5e4; % DRNL.a=0 means no OHCs (no nonlinear path)
|
rmeddis@28
|
79 DRNLParams.a=2e4; % DRNL.a=0 means no OHCs (no nonlinear path)
|
rmeddis@0
|
80
|
rmeddis@0
|
81 DRNLParams.b=8e-6; % *compression threshold raised compression
|
rmeddis@0
|
82 % DRNLParams.b=1; % b=1 means no compression
|
rmeddis@0
|
83
|
rmeddis@0
|
84 DRNLParams.c=0.2; % compression exponent
|
rmeddis@0
|
85 % nonlinear filters
|
rmeddis@0
|
86 DRNLParams.nonlinCFs=BFlist;
|
rmeddis@0
|
87 DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters
|
rmeddis@0
|
88 p=0.2895; q=170; % human (% p=0.14; q=366; % cat)
|
rmeddis@0
|
89 DRNLParams.nlBWs= p * BFlist + q;
|
rmeddis@0
|
90 DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only
|
rmeddis@0
|
91
|
rmeddis@0
|
92 % DRNL linear path:
|
rmeddis@0
|
93 DRNLParams.g=100; % linear path gain factor
|
rmeddis@0
|
94 % linCF is not necessarily the same as nonlinCF
|
rmeddis@0
|
95 minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz
|
rmeddis@0
|
96 DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist;
|
rmeddis@0
|
97 DRNLParams.linOrder= 3; % order of linear gammatone filters
|
rmeddis@0
|
98 minLinBW=100; coeffLinBW=0.6531;
|
rmeddis@0
|
99 DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters
|
rmeddis@0
|
100
|
rmeddis@0
|
101 % DRNL MOC efferents
|
rmeddis@0
|
102 DRNLParams.MOCdelay = efferentDelay; % must be < segment length!
|
rmeddis@23
|
103
|
rmeddis@16
|
104 % 'spikes' model: MOC based on brainstem spiking activity (HSR)
|
rmeddis@23
|
105 DRNLParams.rateToAttenuationFactor = .01; % strength of MOC
|
rmeddis@0
|
106 % DRNLParams.rateToAttenuationFactor = 0; % strength of MOC
|
rmeddis@23
|
107 % 'probability' model: MOC based on AN spiking activity (HSR)
|
rmeddis@26
|
108 DRNLParams.rateToAttenuationFactorProb = .0055; % strength of MOC
|
rmeddis@23
|
109 % DRNLParams.rateToAttenuationFactorProb = .0; % strength of MOC
|
rmeddis@26
|
110 DRNLParams.MOCrateThresholdProb =70; % spikes/s probability only
|
rmeddis@0
|
111
|
rmeddis@19
|
112 DRNLParams.MOCtau =.1; % smoothing for MOC
|
rmeddis@0
|
113
|
rmeddis@0
|
114
|
rmeddis@0
|
115 %% #4 IHC_cilia_RPParams
|
rmeddis@0
|
116
|
rmeddis@0
|
117 IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity
|
rmeddis@0
|
118 % IHC_cilia_RPParams.tc= 0.0005; % 0.0003 filter time simulates viscocity
|
rmeddis@28
|
119 IHC_cilia_RPParams.C= 0.03; % 0.1 scalar (C_cilia )
|
rmeddis@0
|
120 IHC_cilia_RPParams.u0= 5e-9;
|
rmeddis@0
|
121 IHC_cilia_RPParams.s0= 30e-9;
|
rmeddis@0
|
122 IHC_cilia_RPParams.u1= 1e-9;
|
rmeddis@0
|
123 IHC_cilia_RPParams.s1= 1e-9;
|
rmeddis@0
|
124
|
rmeddis@28
|
125 IHC_cilia_RPParams.Gmax= 6e-9; % 2.5e-9 maximum conductance (Siemens)
|
rmeddis@8
|
126 IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance
|
rmeddis@28
|
127 IHC_cilia_RPParams.Ga= .8e-9; % 4.3e-9 fixed apical membrane conductance
|
rmeddis@0
|
128
|
rmeddis@0
|
129 % #5 IHC_RP
|
rmeddis@0
|
130 IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F)
|
rmeddis@28
|
131 % IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F)
|
rmeddis@0
|
132 IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V)
|
rmeddis@0
|
133
|
rmeddis@0
|
134 IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S)
|
rmeddis@0
|
135 IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential
|
rmeddis@0
|
136 IHC_cilia_RPParams.Rpc= 0.04; % combined resistances
|
rmeddis@0
|
137
|
rmeddis@0
|
138
|
rmeddis@0
|
139 %% #5 IHCpreSynapse
|
rmeddis@0
|
140 IHCpreSynapseParams=[];
|
rmeddis@0
|
141 IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance
|
rmeddis@9
|
142 IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance
|
rmeddis@0
|
143 IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential
|
rmeddis@0
|
144 IHCpreSynapseParams.beta= 400; % determine Ca channel opening
|
rmeddis@0
|
145 IHCpreSynapseParams.gamma= 100; % determine Ca channel opening
|
rmeddis@0
|
146 IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms
|
rmeddis@0
|
147 IHCpreSynapseParams.power= 3;
|
rmeddis@0
|
148 % reminder: changing z has a strong effect on HF thresholds (like Et)
|
rmeddis@0
|
149 IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate
|
rmeddis@0
|
150
|
rmeddis@19
|
151 LSRtauCa=35e-6; HSRtauCa=85e-6; % seconds
|
rmeddis@0
|
152 % LSRtauCa=35e-6; HSRtauCa=70e-6; % seconds
|
rmeddis@0
|
153 IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber
|
rmeddis@0
|
154
|
rmeddis@0
|
155 %% #6 AN_IHCsynapse
|
rmeddis@0
|
156 % c=kym/(y(l+r)+kl) (spontaneous rate)
|
rmeddis@0
|
157 % c=(approx) ym/l (saturated rate)
|
rmeddis@0
|
158 AN_IHCsynapseParams=[]; % clear the structure first
|
rmeddis@0
|
159 AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse
|
rmeddis@0
|
160 AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate
|
rmeddis@0
|
161 AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate
|
rmeddis@0
|
162
|
rmeddis@0
|
163 AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store
|
rmeddis@0
|
164 AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store
|
rmeddis@0
|
165
|
rmeddis@0
|
166 % reduce l to increase saturated rate
|
rmeddis@0
|
167 AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft
|
rmeddis@0
|
168 AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft
|
rmeddis@0
|
169
|
rmeddis@0
|
170 AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell
|
rmeddis@0
|
171 % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell
|
rmeddis@0
|
172
|
rmeddis@0
|
173 AN_IHCsynapseParams.refractory_period= 0.00075;
|
rmeddis@0
|
174 % number of AN fibers at each BF (used only for spike generation)
|
rmeddis@0
|
175 AN_IHCsynapseParams.numFibers= 100;
|
rmeddis@0
|
176 AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike
|
rmeddis@0
|
177
|
rmeddis@15
|
178 AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes.
|
rmeddis@15
|
179
|
rmeddis@0
|
180 %% #7 MacGregorMulti (first order brainstem neurons)
|
rmeddis@0
|
181 MacGregorMultiParams=[];
|
rmeddis@0
|
182 MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose
|
rmeddis@0
|
183 switch MacGregorMultiType
|
rmeddis@0
|
184 case 'primary-like'
|
rmeddis@0
|
185 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
|
rmeddis@0
|
186 MacGregorMultiParams.type = 'primary-like cell';
|
rmeddis@0
|
187 MacGregorMultiParams.fibersPerNeuron=4; % N input fibers
|
rmeddis@0
|
188 MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter
|
rmeddis@0
|
189 MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike
|
rmeddis@0
|
190 MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens)
|
rmeddis@0
|
191 MacGregorMultiParams.tauM=5e-4; % membrane time constant (s)
|
rmeddis@0
|
192 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
|
rmeddis@0
|
193 MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S
|
rmeddis@0
|
194 MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s)
|
rmeddis@0
|
195 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
|
rmeddis@0
|
196 MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V)
|
rmeddis@0
|
197 MacGregorMultiParams.tauTh= 0.015; % variable threshold tau
|
rmeddis@0
|
198 MacGregorMultiParams.Er=-0.06; % resting potential (V)
|
rmeddis@0
|
199 MacGregorMultiParams.Eb=0.06; % spike height (V)
|
rmeddis@0
|
200
|
rmeddis@0
|
201 case 'chopper'
|
rmeddis@0
|
202 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
|
rmeddis@0
|
203 MacGregorMultiParams.type = 'chopper cell';
|
rmeddis@0
|
204 MacGregorMultiParams.fibersPerNeuron=10; % N input fibers
|
rmeddis@8
|
205 % MacGregorMultiParams.fibersPerNeuron=6; % N input fibers
|
rmeddis@0
|
206
|
rmeddis@0
|
207 MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter
|
rmeddis@8
|
208 MacGregorMultiParams.currentPerSpike=35e-9; % *per spike
|
rmeddis@28
|
209 % MacGregorMultiParams.currentPerSpike=30e-9; % *per spike
|
rmeddis@0
|
210
|
rmeddis@0
|
211 MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens)
|
rmeddis@0
|
212 MacGregorMultiParams.tauM=0.002; % membrane time constant (s)
|
rmeddis@0
|
213 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
|
rmeddis@0
|
214 MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
|
rmeddis@15
|
215 MacGregorMultiParams.tauGk= 0.0005;% K+ conductance tau (s)
|
rmeddis@0
|
216 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
|
rmeddis@0
|
217 MacGregorMultiParams.c= 0; % threshold shift on spike, (V)
|
rmeddis@0
|
218 MacGregorMultiParams.tauTh= 0.02; % variable threshold tau
|
rmeddis@0
|
219 MacGregorMultiParams.Er=-0.06; % resting potential (V)
|
rmeddis@0
|
220 MacGregorMultiParams.Eb=0.06; % spike height (V)
|
rmeddis@0
|
221 MacGregorMultiParams.PSTHbinWidth= 1e-4;
|
rmeddis@0
|
222 end
|
rmeddis@0
|
223
|
rmeddis@0
|
224 %% #8 MacGregor (second-order neuron). Only one per channel
|
rmeddis@0
|
225 MacGregorParams=[]; % clear the structure first
|
rmeddis@0
|
226 MacGregorParams.type = 'chopper cell';
|
rmeddis@0
|
227 MacGregorParams.fibersPerNeuron=10; % N input fibers
|
rmeddis@0
|
228 MacGregorParams.dendriteLPfreq=100; % dendritic filter
|
rmeddis@0
|
229 MacGregorParams.currentPerSpike=120e-9;% *(A) per spike
|
rmeddis@28
|
230 MacGregorParams.currentPerSpike=40e-9;% *(A) per spike
|
rmeddis@0
|
231
|
rmeddis@0
|
232 MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens)
|
rmeddis@0
|
233 MacGregorParams.tauM=0.002; % membrane time constant (s)
|
rmeddis@0
|
234 MacGregorParams.Ek=-0.01; % K+ eq. potential (V)
|
rmeddis@0
|
235 MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
|
rmeddis@15
|
236 MacGregorParams.tauGk= 0.0005; % K+ conductance tau (s)
|
rmeddis@0
|
237 MacGregorParams.Th0= 0.01; % equilibrium threshold (V)
|
rmeddis@0
|
238 MacGregorParams.c= 0; % threshold shift on spike, (V)
|
rmeddis@0
|
239 MacGregorParams.tauTh= 0.02; % variable threshold tau
|
rmeddis@0
|
240 MacGregorParams.Er=-0.06; % resting potential (V)
|
rmeddis@0
|
241 MacGregorParams.Eb=0.06; % spike height (V)
|
rmeddis@0
|
242 MacGregorParams.debugging=0; % (special)
|
rmeddis@0
|
243 % wideband accepts input from all channels (of same fiber type)
|
rmeddis@0
|
244 % use wideband to create inhibitory units
|
rmeddis@0
|
245 MacGregorParams.wideband=0; % special for wideband units
|
rmeddis@0
|
246 % MacGregorParams.saveAllData=0;
|
rmeddis@0
|
247
|
rmeddis@0
|
248 %% #9 filteredSACF
|
rmeddis@0
|
249 minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags
|
rmeddis@0
|
250 pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches));
|
rmeddis@0
|
251 filteredSACFParams.lags=1./pitches; % autocorrelation lags vector
|
rmeddis@0
|
252 filteredSACFParams.acfTau= .003; % time constant of running ACF
|
rmeddis@0
|
253 filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF
|
rmeddis@0
|
254 filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs
|
rmeddis@0
|
255 filteredSACFParams.plotACFs=0; % special plot (see code)
|
rmeddis@0
|
256 % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags
|
rmeddis@0
|
257 filteredSACFParams.lagsProcedure= 'useAllLags';
|
rmeddis@0
|
258 % filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights';
|
rmeddis@0
|
259 % filteredSACFParams.lagsProcedure= 'omitShortLags';
|
rmeddis@0
|
260 filteredSACFParams.criterionForOmittingLags=3;
|
rmeddis@0
|
261
|
rmeddis@0
|
262 % checks
|
rmeddis@0
|
263 if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron
|
rmeddis@0
|
264 error('MacGregorMulti: too few input fibers for input to MacG unit')
|
rmeddis@0
|
265 end
|
rmeddis@0
|
266
|
rmeddis@0
|
267
|
rmeddis@26
|
268 %% now accept last minute parameter changes required by the calling program
|
rmeddis@26
|
269 % paramChanges
|
rmeddis@26
|
270 if nargin>3 && ~isempty(paramChanges)
|
rmeddis@26
|
271 nChanges=length(paramChanges);
|
rmeddis@26
|
272 for idx=1:nChanges
|
rmeddis@26
|
273 eval(paramChanges{idx})
|
rmeddis@26
|
274 end
|
rmeddis@26
|
275 end
|
rmeddis@26
|
276
|
rmeddis@26
|
277
|
rmeddis@0
|
278 %% write all parameters to the command window
|
rmeddis@0
|
279 % showParams is currently set at the top of htis function
|
rmeddis@0
|
280 if showParams
|
rmeddis@0
|
281 fprintf('\n %%%%%%%%\n')
|
rmeddis@0
|
282 fprintf('\n%s\n', method.parameterSource)
|
rmeddis@0
|
283 fprintf('\n')
|
rmeddis@0
|
284 nm=UTIL_paramsList(whos);
|
rmeddis@0
|
285 for i=1:length(nm)
|
rmeddis@0
|
286 % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')'])
|
rmeddis@0
|
287 if ~strcmp(nm(i), 'method')
|
rmeddis@0
|
288 eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)'])
|
rmeddis@0
|
289 end
|
rmeddis@0
|
290 end
|
rmeddis@0
|
291
|
rmeddis@26
|
292 % highlight parameter changes made locally
|
rmeddis@26
|
293 if nargin>3 && ~isempty(paramChanges)
|
rmeddis@26
|
294 fprintf('\n Local parameter changes:\n')
|
rmeddis@26
|
295 for i=1:length(paramChanges)
|
rmeddis@26
|
296 disp(paramChanges{i})
|
rmeddis@26
|
297 end
|
rmeddis@0
|
298 end
|
rmeddis@0
|
299 end
|
rmeddis@0
|
300
|
rmeddis@26
|
301 % for backward compatibility
|
rmeddis@26
|
302 experiment.comparisonData=[];
|