annotate parameterStore/MAPparamsNormal.m @ 28:02aa9826efe0

mainly multiThreshold
author Ray Meddis <rmeddis@essex.ac.uk>
date Fri, 01 Jul 2011 12:59:47 +0100
parents b03ef38fe497
children e097e9044ef6
rev   line source
rmeddis@0 1 function method=MAPparamsNormal ...
rmeddis@26 2 (BFlist, sampleRate, showParams, paramChanges)
rmeddis@0 3 % MAPparams<> establishes a complete set of MAP parameters
rmeddis@0 4 % Parameter file names must be of the form <MAPparams> <name>
rmeddis@0 5 %
rmeddis@0 6 % input arguments
rmeddis@0 7 % BFlist (optional) specifies the desired list of channel BFs
rmeddis@0 8 % otherwise defaults set below
rmeddis@0 9 % sampleRate (optional), default is 50000.
rmeddis@0 10 % showParams (optional) =1 prints out the complete set of parameters
rmeddis@0 11 % output argument
rmeddis@0 12 % method passes a miscelleny of values
rmeddis@0 13
rmeddis@26 14 global inputStimulusParams OMEParams DRNLParams IHC_cilia_RPParams
rmeddis@0 15 global IHC_VResp_VivoParams IHCpreSynapseParams AN_IHCsynapseParams
rmeddis@0 16 global MacGregorParams MacGregorMultiParams filteredSACFParams
rmeddis@0 17 global experiment % used by calls from multiThreshold only
rmeddis@26 18
rmeddis@0 19
rmeddis@0 20 currentFile=mfilename; % i.e. the name of this mfile
rmeddis@0 21 method.parameterSource=currentFile(10:end); % for the record
rmeddis@0 22
rmeddis@0 23 efferentDelay=0.010;
rmeddis@0 24 method.segmentDuration=efferentDelay;
rmeddis@0 25
rmeddis@0 26 if nargin<3, showParams=0; end
rmeddis@0 27 if nargin<2, sampleRate=50000; end
rmeddis@0 28 if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default
rmeddis@0 29 lowestBF=250; highestBF= 8000; numChannels=21;
rmeddis@0 30 % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000
rmeddis@0 31 BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels));
rmeddis@0 32 end
rmeddis@0 33 % BFlist=1000;
rmeddis@0 34
rmeddis@0 35 % preserve for backward campatibility
rmeddis@0 36 method.nonlinCF=BFlist;
rmeddis@0 37 method.dt=1/sampleRate;
rmeddis@0 38
rmeddis@0 39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@0 40 % set model parameters
rmeddis@0 41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@0 42
rmeddis@0 43 %% #1 inputStimulus
rmeddis@0 44 inputStimulusParams=[];
rmeddis@0 45 inputStimulusParams.sampleRate= sampleRate;
rmeddis@0 46
rmeddis@0 47 %% #2 outerMiddleEar
rmeddis@0 48 OMEParams=[]; % clear the structure first
rmeddis@0 49 % outer ear resonances band pass filter [gain lp order hp]
rmeddis@0 50 OMEParams.externalResonanceFilters= [ 10 1 1000 4000];
rmeddis@0 51
rmeddis@0 52 % highpass stapes filter
rmeddis@0 53 % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL)
rmeddis@0 54 OMEParams.OMEstapesLPcutoff= 1000;
rmeddis@0 55 OMEParams.stapesScalar= 45e-9;
rmeddis@0 56
rmeddis@0 57 % Acoustic reflex: maximum attenuation should be around 25 dB Price (1966)
rmeddis@0 58 % i.e. a minimum ratio of 0.056.
rmeddis@16 59 % 'spikes' model: AR based on brainstem spiking activity (LSR)
rmeddis@23 60 OMEParams.rateToAttenuationFactor=0.006; % * N(all ICspikes)
rmeddis@26 61 % OMEParams.rateToAttenuationFactor=0; % * N(all ICspikes)
rmeddis@16 62
rmeddis@16 63 % 'probability model': Ar based on AN firing probabilities (LSR)
rmeddis@24 64 OMEParams.rateToAttenuationFactorProb=0.01;% * N(all ANrates)
rmeddis@26 65 % OMEParams.rateToAttenuationFactorProb=0;% * N(all ANrates)
rmeddis@16 66
rmeddis@0 67 % asymptote should be around 100-200 ms
rmeddis@0 68 OMEParams.ARtau=.05; % AR smoothing function
rmeddis@0 69 % delay must be longer than the segment length
rmeddis@0 70 OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency
rmeddis@0 71 OMEParams.ARrateThreshold=0;
rmeddis@0 72
rmeddis@0 73 %% #3 DRNL
rmeddis@0 74 DRNLParams=[]; % clear the structure first
rmeddis@0 75 DRNLParams.BFlist=BFlist;
rmeddis@0 76
rmeddis@0 77 % DRNL nonlinear path
rmeddis@23 78 DRNLParams.a=5e4; % DRNL.a=0 means no OHCs (no nonlinear path)
rmeddis@28 79 DRNLParams.a=2e4; % DRNL.a=0 means no OHCs (no nonlinear path)
rmeddis@0 80
rmeddis@0 81 DRNLParams.b=8e-6; % *compression threshold raised compression
rmeddis@0 82 % DRNLParams.b=1; % b=1 means no compression
rmeddis@0 83
rmeddis@0 84 DRNLParams.c=0.2; % compression exponent
rmeddis@0 85 % nonlinear filters
rmeddis@0 86 DRNLParams.nonlinCFs=BFlist;
rmeddis@0 87 DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters
rmeddis@0 88 p=0.2895; q=170; % human (% p=0.14; q=366; % cat)
rmeddis@0 89 DRNLParams.nlBWs= p * BFlist + q;
rmeddis@0 90 DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only
rmeddis@0 91
rmeddis@0 92 % DRNL linear path:
rmeddis@0 93 DRNLParams.g=100; % linear path gain factor
rmeddis@0 94 % linCF is not necessarily the same as nonlinCF
rmeddis@0 95 minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz
rmeddis@0 96 DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist;
rmeddis@0 97 DRNLParams.linOrder= 3; % order of linear gammatone filters
rmeddis@0 98 minLinBW=100; coeffLinBW=0.6531;
rmeddis@0 99 DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters
rmeddis@0 100
rmeddis@0 101 % DRNL MOC efferents
rmeddis@0 102 DRNLParams.MOCdelay = efferentDelay; % must be < segment length!
rmeddis@23 103
rmeddis@16 104 % 'spikes' model: MOC based on brainstem spiking activity (HSR)
rmeddis@23 105 DRNLParams.rateToAttenuationFactor = .01; % strength of MOC
rmeddis@0 106 % DRNLParams.rateToAttenuationFactor = 0; % strength of MOC
rmeddis@23 107 % 'probability' model: MOC based on AN spiking activity (HSR)
rmeddis@26 108 DRNLParams.rateToAttenuationFactorProb = .0055; % strength of MOC
rmeddis@23 109 % DRNLParams.rateToAttenuationFactorProb = .0; % strength of MOC
rmeddis@26 110 DRNLParams.MOCrateThresholdProb =70; % spikes/s probability only
rmeddis@0 111
rmeddis@19 112 DRNLParams.MOCtau =.1; % smoothing for MOC
rmeddis@0 113
rmeddis@0 114
rmeddis@0 115 %% #4 IHC_cilia_RPParams
rmeddis@0 116
rmeddis@0 117 IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity
rmeddis@0 118 % IHC_cilia_RPParams.tc= 0.0005; % 0.0003 filter time simulates viscocity
rmeddis@28 119 IHC_cilia_RPParams.C= 0.03; % 0.1 scalar (C_cilia )
rmeddis@0 120 IHC_cilia_RPParams.u0= 5e-9;
rmeddis@0 121 IHC_cilia_RPParams.s0= 30e-9;
rmeddis@0 122 IHC_cilia_RPParams.u1= 1e-9;
rmeddis@0 123 IHC_cilia_RPParams.s1= 1e-9;
rmeddis@0 124
rmeddis@28 125 IHC_cilia_RPParams.Gmax= 6e-9; % 2.5e-9 maximum conductance (Siemens)
rmeddis@8 126 IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance
rmeddis@28 127 IHC_cilia_RPParams.Ga= .8e-9; % 4.3e-9 fixed apical membrane conductance
rmeddis@0 128
rmeddis@0 129 % #5 IHC_RP
rmeddis@0 130 IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F)
rmeddis@28 131 % IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F)
rmeddis@0 132 IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V)
rmeddis@0 133
rmeddis@0 134 IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S)
rmeddis@0 135 IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential
rmeddis@0 136 IHC_cilia_RPParams.Rpc= 0.04; % combined resistances
rmeddis@0 137
rmeddis@0 138
rmeddis@0 139 %% #5 IHCpreSynapse
rmeddis@0 140 IHCpreSynapseParams=[];
rmeddis@0 141 IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance
rmeddis@9 142 IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance
rmeddis@0 143 IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential
rmeddis@0 144 IHCpreSynapseParams.beta= 400; % determine Ca channel opening
rmeddis@0 145 IHCpreSynapseParams.gamma= 100; % determine Ca channel opening
rmeddis@0 146 IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms
rmeddis@0 147 IHCpreSynapseParams.power= 3;
rmeddis@0 148 % reminder: changing z has a strong effect on HF thresholds (like Et)
rmeddis@0 149 IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate
rmeddis@0 150
rmeddis@19 151 LSRtauCa=35e-6; HSRtauCa=85e-6; % seconds
rmeddis@0 152 % LSRtauCa=35e-6; HSRtauCa=70e-6; % seconds
rmeddis@0 153 IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber
rmeddis@0 154
rmeddis@0 155 %% #6 AN_IHCsynapse
rmeddis@0 156 % c=kym/(y(l+r)+kl) (spontaneous rate)
rmeddis@0 157 % c=(approx) ym/l (saturated rate)
rmeddis@0 158 AN_IHCsynapseParams=[]; % clear the structure first
rmeddis@0 159 AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse
rmeddis@0 160 AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate
rmeddis@0 161 AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate
rmeddis@0 162
rmeddis@0 163 AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store
rmeddis@0 164 AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store
rmeddis@0 165
rmeddis@0 166 % reduce l to increase saturated rate
rmeddis@0 167 AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft
rmeddis@0 168 AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft
rmeddis@0 169
rmeddis@0 170 AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell
rmeddis@0 171 % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell
rmeddis@0 172
rmeddis@0 173 AN_IHCsynapseParams.refractory_period= 0.00075;
rmeddis@0 174 % number of AN fibers at each BF (used only for spike generation)
rmeddis@0 175 AN_IHCsynapseParams.numFibers= 100;
rmeddis@0 176 AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike
rmeddis@0 177
rmeddis@15 178 AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes.
rmeddis@15 179
rmeddis@0 180 %% #7 MacGregorMulti (first order brainstem neurons)
rmeddis@0 181 MacGregorMultiParams=[];
rmeddis@0 182 MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose
rmeddis@0 183 switch MacGregorMultiType
rmeddis@0 184 case 'primary-like'
rmeddis@0 185 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@0 186 MacGregorMultiParams.type = 'primary-like cell';
rmeddis@0 187 MacGregorMultiParams.fibersPerNeuron=4; % N input fibers
rmeddis@0 188 MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter
rmeddis@0 189 MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike
rmeddis@0 190 MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens)
rmeddis@0 191 MacGregorMultiParams.tauM=5e-4; % membrane time constant (s)
rmeddis@0 192 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 193 MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S
rmeddis@0 194 MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s)
rmeddis@0 195 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 196 MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V)
rmeddis@0 197 MacGregorMultiParams.tauTh= 0.015; % variable threshold tau
rmeddis@0 198 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@0 199 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@0 200
rmeddis@0 201 case 'chopper'
rmeddis@0 202 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@0 203 MacGregorMultiParams.type = 'chopper cell';
rmeddis@0 204 MacGregorMultiParams.fibersPerNeuron=10; % N input fibers
rmeddis@8 205 % MacGregorMultiParams.fibersPerNeuron=6; % N input fibers
rmeddis@0 206
rmeddis@0 207 MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter
rmeddis@8 208 MacGregorMultiParams.currentPerSpike=35e-9; % *per spike
rmeddis@28 209 % MacGregorMultiParams.currentPerSpike=30e-9; % *per spike
rmeddis@0 210
rmeddis@0 211 MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens)
rmeddis@0 212 MacGregorMultiParams.tauM=0.002; % membrane time constant (s)
rmeddis@0 213 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 214 MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@15 215 MacGregorMultiParams.tauGk= 0.0005;% K+ conductance tau (s)
rmeddis@0 216 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 217 MacGregorMultiParams.c= 0; % threshold shift on spike, (V)
rmeddis@0 218 MacGregorMultiParams.tauTh= 0.02; % variable threshold tau
rmeddis@0 219 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@0 220 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@0 221 MacGregorMultiParams.PSTHbinWidth= 1e-4;
rmeddis@0 222 end
rmeddis@0 223
rmeddis@0 224 %% #8 MacGregor (second-order neuron). Only one per channel
rmeddis@0 225 MacGregorParams=[]; % clear the structure first
rmeddis@0 226 MacGregorParams.type = 'chopper cell';
rmeddis@0 227 MacGregorParams.fibersPerNeuron=10; % N input fibers
rmeddis@0 228 MacGregorParams.dendriteLPfreq=100; % dendritic filter
rmeddis@0 229 MacGregorParams.currentPerSpike=120e-9;% *(A) per spike
rmeddis@28 230 MacGregorParams.currentPerSpike=40e-9;% *(A) per spike
rmeddis@0 231
rmeddis@0 232 MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens)
rmeddis@0 233 MacGregorParams.tauM=0.002; % membrane time constant (s)
rmeddis@0 234 MacGregorParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 235 MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@15 236 MacGregorParams.tauGk= 0.0005; % K+ conductance tau (s)
rmeddis@0 237 MacGregorParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 238 MacGregorParams.c= 0; % threshold shift on spike, (V)
rmeddis@0 239 MacGregorParams.tauTh= 0.02; % variable threshold tau
rmeddis@0 240 MacGregorParams.Er=-0.06; % resting potential (V)
rmeddis@0 241 MacGregorParams.Eb=0.06; % spike height (V)
rmeddis@0 242 MacGregorParams.debugging=0; % (special)
rmeddis@0 243 % wideband accepts input from all channels (of same fiber type)
rmeddis@0 244 % use wideband to create inhibitory units
rmeddis@0 245 MacGregorParams.wideband=0; % special for wideband units
rmeddis@0 246 % MacGregorParams.saveAllData=0;
rmeddis@0 247
rmeddis@0 248 %% #9 filteredSACF
rmeddis@0 249 minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags
rmeddis@0 250 pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches));
rmeddis@0 251 filteredSACFParams.lags=1./pitches; % autocorrelation lags vector
rmeddis@0 252 filteredSACFParams.acfTau= .003; % time constant of running ACF
rmeddis@0 253 filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF
rmeddis@0 254 filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs
rmeddis@0 255 filteredSACFParams.plotACFs=0; % special plot (see code)
rmeddis@0 256 % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags
rmeddis@0 257 filteredSACFParams.lagsProcedure= 'useAllLags';
rmeddis@0 258 % filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights';
rmeddis@0 259 % filteredSACFParams.lagsProcedure= 'omitShortLags';
rmeddis@0 260 filteredSACFParams.criterionForOmittingLags=3;
rmeddis@0 261
rmeddis@0 262 % checks
rmeddis@0 263 if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron
rmeddis@0 264 error('MacGregorMulti: too few input fibers for input to MacG unit')
rmeddis@0 265 end
rmeddis@0 266
rmeddis@0 267
rmeddis@26 268 %% now accept last minute parameter changes required by the calling program
rmeddis@26 269 % paramChanges
rmeddis@26 270 if nargin>3 && ~isempty(paramChanges)
rmeddis@26 271 nChanges=length(paramChanges);
rmeddis@26 272 for idx=1:nChanges
rmeddis@26 273 eval(paramChanges{idx})
rmeddis@26 274 end
rmeddis@26 275 end
rmeddis@26 276
rmeddis@26 277
rmeddis@0 278 %% write all parameters to the command window
rmeddis@0 279 % showParams is currently set at the top of htis function
rmeddis@0 280 if showParams
rmeddis@0 281 fprintf('\n %%%%%%%%\n')
rmeddis@0 282 fprintf('\n%s\n', method.parameterSource)
rmeddis@0 283 fprintf('\n')
rmeddis@0 284 nm=UTIL_paramsList(whos);
rmeddis@0 285 for i=1:length(nm)
rmeddis@0 286 % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')'])
rmeddis@0 287 if ~strcmp(nm(i), 'method')
rmeddis@0 288 eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)'])
rmeddis@0 289 end
rmeddis@0 290 end
rmeddis@0 291
rmeddis@26 292 % highlight parameter changes made locally
rmeddis@26 293 if nargin>3 && ~isempty(paramChanges)
rmeddis@26 294 fprintf('\n Local parameter changes:\n')
rmeddis@26 295 for i=1:length(paramChanges)
rmeddis@26 296 disp(paramChanges{i})
rmeddis@26 297 end
rmeddis@0 298 end
rmeddis@0 299 end
rmeddis@0 300
rmeddis@26 301 % for backward compatibility
rmeddis@26 302 experiment.comparisonData=[];