annotate parameterStore/MAPparamsNormal.m @ 16:37a379b27cff

changes to showMap
author Ray Meddis <rmeddis@essex.ac.uk>
date Tue, 07 Jun 2011 09:53:50 +0100
parents 35af36fe0a35
children 5b23b9f11806 c489ebada16e
rev   line source
rmeddis@0 1 function method=MAPparamsNormal ...
rmeddis@0 2 (BFlist, sampleRate, showParams)
rmeddis@0 3 % MAPparams<> establishes a complete set of MAP parameters
rmeddis@0 4 % Parameter file names must be of the form <MAPparams> <name>
rmeddis@0 5 %
rmeddis@0 6 % input arguments
rmeddis@0 7 % BFlist (optional) specifies the desired list of channel BFs
rmeddis@0 8 % otherwise defaults set below
rmeddis@0 9 % sampleRate (optional), default is 50000.
rmeddis@0 10 % showParams (optional) =1 prints out the complete set of parameters
rmeddis@0 11 % output argument
rmeddis@0 12 % method passes a miscelleny of values
rmeddis@0 13
rmeddis@0 14 global inputStimulusParams OMEParams DRNLParams
rmeddis@0 15 global IHC_VResp_VivoParams IHCpreSynapseParams AN_IHCsynapseParams
rmeddis@0 16 global MacGregorParams MacGregorMultiParams filteredSACFParams
rmeddis@0 17 global experiment % used by calls from multiThreshold only
rmeddis@0 18 global IHC_cilia_RPParams
rmeddis@0 19
rmeddis@0 20 currentFile=mfilename; % i.e. the name of this mfile
rmeddis@0 21 method.parameterSource=currentFile(10:end); % for the record
rmeddis@0 22
rmeddis@0 23 efferentDelay=0.010;
rmeddis@0 24 method.segmentDuration=efferentDelay;
rmeddis@0 25
rmeddis@0 26 if nargin<3, showParams=0; end
rmeddis@0 27 if nargin<2, sampleRate=50000; end
rmeddis@0 28 if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default
rmeddis@0 29 lowestBF=250; highestBF= 8000; numChannels=21;
rmeddis@0 30 % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000
rmeddis@0 31 BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels));
rmeddis@0 32 end
rmeddis@0 33 % BFlist=1000;
rmeddis@0 34
rmeddis@0 35 % preserve for backward campatibility
rmeddis@0 36 method.nonlinCF=BFlist;
rmeddis@0 37 method.dt=1/sampleRate;
rmeddis@0 38
rmeddis@0 39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@0 40 % set model parameters
rmeddis@0 41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@0 42
rmeddis@0 43 %% #1 inputStimulus
rmeddis@0 44 inputStimulusParams=[];
rmeddis@0 45 inputStimulusParams.sampleRate= sampleRate;
rmeddis@0 46
rmeddis@0 47 %% #2 outerMiddleEar
rmeddis@0 48 OMEParams=[]; % clear the structure first
rmeddis@0 49 % outer ear resonances band pass filter [gain lp order hp]
rmeddis@0 50 OMEParams.externalResonanceFilters= [ 10 1 1000 4000];
rmeddis@0 51
rmeddis@0 52 % highpass stapes filter
rmeddis@0 53 % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL)
rmeddis@0 54 OMEParams.OMEstapesLPcutoff= 1000;
rmeddis@0 55 OMEParams.stapesScalar= 45e-9;
rmeddis@0 56
rmeddis@0 57 % Acoustic reflex: maximum attenuation should be around 25 dB Price (1966)
rmeddis@0 58 % i.e. a minimum ratio of 0.056.
rmeddis@16 59 % 'spikes' model: AR based on brainstem spiking activity (LSR)
rmeddis@16 60 OMEParams.rateToAttenuationFactor=0.003; % * N(all ICspikes)
rmeddis@0 61 % OMEParams.rateToAttenuationFactor=0; % * N(all ICspikes)
rmeddis@16 62
rmeddis@16 63 % 'probability model': Ar based on AN firing probabilities (LSR)
rmeddis@16 64 OMEParams.rateToAttenuationFactorProb=0.003;% * N(all ANrates)
rmeddis@0 65 % OMEParams.rateToAttenuationFactorProb=0;% * N(all ANrates)
rmeddis@16 66
rmeddis@0 67 % asymptote should be around 100-200 ms
rmeddis@0 68 OMEParams.ARtau=.05; % AR smoothing function
rmeddis@0 69 % delay must be longer than the segment length
rmeddis@0 70 OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency
rmeddis@0 71 OMEParams.ARrateThreshold=0;
rmeddis@0 72
rmeddis@0 73 %% #3 DRNL
rmeddis@0 74 DRNLParams=[]; % clear the structure first
rmeddis@0 75 DRNLParams.BFlist=BFlist;
rmeddis@0 76
rmeddis@0 77 % DRNL nonlinear path
rmeddis@0 78 DRNLParams.a=3e4; % nonlinear path gain (below compression threshold)
rmeddis@9 79 % DRNLParams.a=3e2; % DRNL.a=0 means no OHCs (no nonlinear path)
rmeddis@0 80
rmeddis@0 81 DRNLParams.b=8e-6; % *compression threshold raised compression
rmeddis@0 82 % DRNLParams.b=1; % b=1 means no compression
rmeddis@0 83
rmeddis@0 84 DRNLParams.c=0.2; % compression exponent
rmeddis@0 85 % nonlinear filters
rmeddis@0 86 DRNLParams.nonlinCFs=BFlist;
rmeddis@0 87 DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters
rmeddis@0 88 p=0.2895; q=170; % human (% p=0.14; q=366; % cat)
rmeddis@0 89 DRNLParams.nlBWs= p * BFlist + q;
rmeddis@0 90 DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only
rmeddis@0 91
rmeddis@0 92 % DRNL linear path:
rmeddis@0 93 DRNLParams.g=100; % linear path gain factor
rmeddis@0 94 % linCF is not necessarily the same as nonlinCF
rmeddis@0 95 minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz
rmeddis@0 96 DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist;
rmeddis@0 97 DRNLParams.linOrder= 3; % order of linear gammatone filters
rmeddis@0 98 minLinBW=100; coeffLinBW=0.6531;
rmeddis@0 99 DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters
rmeddis@0 100
rmeddis@0 101 % DRNL MOC efferents
rmeddis@0 102 DRNLParams.MOCdelay = efferentDelay; % must be < segment length!
rmeddis@16 103 % 'spikes' model: MOC based on brainstem spiking activity (HSR)
rmeddis@16 104 DRNLParams.rateToAttenuationFactor = .009; % strength of MOC
rmeddis@16 105 DRNLParams.rateToAttenuationFactor = .009; % strength of MOC
rmeddis@0 106 % DRNLParams.rateToAttenuationFactor = 0; % strength of MOC
rmeddis@0 107
rmeddis@16 108 % 'probability' model: MOC based on AN spiking activity (HSR)
rmeddis@16 109 DRNLParams.rateToAttenuationFactorProb = .007; % strength of MOC
rmeddis@16 110 DRNLParams.rateToAttenuationFactorProb = .0; % strength of MOC
rmeddis@0 111 DRNLParams.MOCtau =.03; % smoothing for MOC
rmeddis@0 112 DRNLParams.MOCrateThreshold =50; % set to AN rate threshold
rmeddis@0 113
rmeddis@0 114
rmeddis@0 115 %% #4 IHC_cilia_RPParams
rmeddis@0 116
rmeddis@0 117 IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity
rmeddis@0 118 % IHC_cilia_RPParams.tc= 0.0005; % 0.0003 filter time simulates viscocity
rmeddis@0 119 IHC_cilia_RPParams.C= 0.05; % 0.1 scalar (C_cilia )
rmeddis@0 120 IHC_cilia_RPParams.u0= 5e-9;
rmeddis@0 121 IHC_cilia_RPParams.s0= 30e-9;
rmeddis@0 122 IHC_cilia_RPParams.u1= 1e-9;
rmeddis@0 123 IHC_cilia_RPParams.s1= 1e-9;
rmeddis@0 124
rmeddis@0 125 IHC_cilia_RPParams.Gmax= 5e-9; % 2.5e-9 maximum conductance (Siemens)
rmeddis@8 126 IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance
rmeddis@0 127
rmeddis@0 128 % #5 IHC_RP
rmeddis@0 129 IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F)
rmeddis@9 130 IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F)
rmeddis@0 131 IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V)
rmeddis@0 132
rmeddis@0 133 IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S)
rmeddis@0 134 IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential
rmeddis@0 135 IHC_cilia_RPParams.Rpc= 0.04; % combined resistances
rmeddis@0 136
rmeddis@0 137
rmeddis@0 138 %% #5 IHCpreSynapse
rmeddis@0 139 IHCpreSynapseParams=[];
rmeddis@0 140 IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance
rmeddis@9 141 IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance
rmeddis@0 142 IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential
rmeddis@0 143 IHCpreSynapseParams.beta= 400; % determine Ca channel opening
rmeddis@0 144 IHCpreSynapseParams.gamma= 100; % determine Ca channel opening
rmeddis@0 145 IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms
rmeddis@0 146 IHCpreSynapseParams.power= 3;
rmeddis@0 147 % reminder: changing z has a strong effect on HF thresholds (like Et)
rmeddis@0 148 IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate
rmeddis@0 149
rmeddis@0 150 LSRtauCa=50e-6; HSRtauCa=85e-6; % seconds
rmeddis@0 151 % LSRtauCa=35e-6; HSRtauCa=70e-6; % seconds
rmeddis@0 152 IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber
rmeddis@0 153
rmeddis@0 154 %% #6 AN_IHCsynapse
rmeddis@0 155 % c=kym/(y(l+r)+kl) (spontaneous rate)
rmeddis@0 156 % c=(approx) ym/l (saturated rate)
rmeddis@0 157 AN_IHCsynapseParams=[]; % clear the structure first
rmeddis@0 158 AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse
rmeddis@0 159 AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate
rmeddis@0 160 AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate
rmeddis@0 161
rmeddis@0 162 AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store
rmeddis@0 163 AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store
rmeddis@0 164
rmeddis@0 165 % reduce l to increase saturated rate
rmeddis@0 166 AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft
rmeddis@0 167 AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft
rmeddis@0 168
rmeddis@0 169 AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell
rmeddis@0 170 % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell
rmeddis@0 171
rmeddis@0 172 AN_IHCsynapseParams.refractory_period= 0.00075;
rmeddis@0 173 % number of AN fibers at each BF (used only for spike generation)
rmeddis@0 174 AN_IHCsynapseParams.numFibers= 100;
rmeddis@0 175 AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike
rmeddis@0 176
rmeddis@15 177 AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes.
rmeddis@15 178
rmeddis@0 179 %% #7 MacGregorMulti (first order brainstem neurons)
rmeddis@0 180 MacGregorMultiParams=[];
rmeddis@0 181 MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose
rmeddis@0 182 switch MacGregorMultiType
rmeddis@0 183 case 'primary-like'
rmeddis@0 184 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@0 185 MacGregorMultiParams.type = 'primary-like cell';
rmeddis@0 186 MacGregorMultiParams.fibersPerNeuron=4; % N input fibers
rmeddis@0 187 MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter
rmeddis@0 188 MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike
rmeddis@0 189 MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens)
rmeddis@0 190 MacGregorMultiParams.tauM=5e-4; % membrane time constant (s)
rmeddis@0 191 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 192 MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S
rmeddis@0 193 MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s)
rmeddis@0 194 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 195 MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V)
rmeddis@0 196 MacGregorMultiParams.tauTh= 0.015; % variable threshold tau
rmeddis@0 197 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@0 198 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@0 199
rmeddis@0 200 case 'chopper'
rmeddis@0 201 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@0 202 MacGregorMultiParams.type = 'chopper cell';
rmeddis@0 203 MacGregorMultiParams.fibersPerNeuron=10; % N input fibers
rmeddis@8 204 % MacGregorMultiParams.fibersPerNeuron=6; % N input fibers
rmeddis@0 205
rmeddis@0 206 MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter
rmeddis@8 207 MacGregorMultiParams.currentPerSpike=35e-9; % *per spike
rmeddis@15 208 MacGregorMultiParams.currentPerSpike=30e-9; % *per spike
rmeddis@0 209
rmeddis@0 210 MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens)
rmeddis@0 211 MacGregorMultiParams.tauM=0.002; % membrane time constant (s)
rmeddis@0 212 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 213 MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@15 214 MacGregorMultiParams.tauGk= 0.0005;% K+ conductance tau (s)
rmeddis@0 215 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 216 MacGregorMultiParams.c= 0; % threshold shift on spike, (V)
rmeddis@0 217 MacGregorMultiParams.tauTh= 0.02; % variable threshold tau
rmeddis@0 218 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@0 219 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@0 220 MacGregorMultiParams.PSTHbinWidth= 1e-4;
rmeddis@0 221 end
rmeddis@0 222
rmeddis@0 223 %% #8 MacGregor (second-order neuron). Only one per channel
rmeddis@0 224 MacGregorParams=[]; % clear the structure first
rmeddis@0 225 MacGregorParams.type = 'chopper cell';
rmeddis@0 226 MacGregorParams.fibersPerNeuron=10; % N input fibers
rmeddis@0 227 MacGregorParams.dendriteLPfreq=100; % dendritic filter
rmeddis@0 228 MacGregorParams.currentPerSpike=120e-9;% *(A) per spike
rmeddis@15 229 MacGregorParams.currentPerSpike=30e-9;% *(A) per spike
rmeddis@0 230
rmeddis@0 231 MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens)
rmeddis@0 232 MacGregorParams.tauM=0.002; % membrane time constant (s)
rmeddis@0 233 MacGregorParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 234 MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@15 235 MacGregorParams.tauGk= 0.0005; % K+ conductance tau (s)
rmeddis@0 236 MacGregorParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 237 MacGregorParams.c= 0; % threshold shift on spike, (V)
rmeddis@0 238 MacGregorParams.tauTh= 0.02; % variable threshold tau
rmeddis@0 239 MacGregorParams.Er=-0.06; % resting potential (V)
rmeddis@0 240 MacGregorParams.Eb=0.06; % spike height (V)
rmeddis@0 241 MacGregorParams.debugging=0; % (special)
rmeddis@0 242 % wideband accepts input from all channels (of same fiber type)
rmeddis@0 243 % use wideband to create inhibitory units
rmeddis@0 244 MacGregorParams.wideband=0; % special for wideband units
rmeddis@0 245 % MacGregorParams.saveAllData=0;
rmeddis@0 246
rmeddis@0 247 %% #9 filteredSACF
rmeddis@0 248 minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags
rmeddis@0 249 pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches));
rmeddis@0 250 filteredSACFParams.lags=1./pitches; % autocorrelation lags vector
rmeddis@0 251 filteredSACFParams.acfTau= .003; % time constant of running ACF
rmeddis@0 252 filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF
rmeddis@0 253 filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs
rmeddis@0 254 filteredSACFParams.plotACFs=0; % special plot (see code)
rmeddis@0 255 % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags
rmeddis@0 256 filteredSACFParams.lagsProcedure= 'useAllLags';
rmeddis@0 257 % filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights';
rmeddis@0 258 % filteredSACFParams.lagsProcedure= 'omitShortLags';
rmeddis@0 259 filteredSACFParams.criterionForOmittingLags=3;
rmeddis@0 260
rmeddis@0 261 % checks
rmeddis@0 262 if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron
rmeddis@0 263 error('MacGregorMulti: too few input fibers for input to MacG unit')
rmeddis@0 264 end
rmeddis@0 265
rmeddis@0 266
rmeddis@0 267 %% write all parameters to the command window
rmeddis@0 268 % showParams is currently set at the top of htis function
rmeddis@0 269 if showParams
rmeddis@0 270 fprintf('\n %%%%%%%%\n')
rmeddis@0 271 fprintf('\n%s\n', method.parameterSource)
rmeddis@0 272 fprintf('\n')
rmeddis@0 273 nm=UTIL_paramsList(whos);
rmeddis@0 274 for i=1:length(nm)
rmeddis@0 275 % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')'])
rmeddis@0 276 if ~strcmp(nm(i), 'method')
rmeddis@0 277 eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)'])
rmeddis@0 278 end
rmeddis@0 279 end
rmeddis@0 280 end
rmeddis@0 281
rmeddis@0 282
rmeddis@0 283
rmeddis@0 284 % ********************************************************************** comparison data
rmeddis@0 285 % store individual data here for display on the multiThreshold GUI (if used)
rmeddis@0 286 % the final value in each vector is an identifier (BF or duration))
rmeddis@0 287 if isstruct(experiment)
rmeddis@0 288 switch experiment.paradigm
rmeddis@0 289 case {'IFMC','IFMC_8ms'}
rmeddis@0 290 % based on MPa
rmeddis@0 291 comparisonData=[
rmeddis@0 292 66 51 49 48 46 45 54 250;
rmeddis@0 293 60 54 46 42 39 49 65 500;
rmeddis@0 294 64 51 38 32 33 59 75 1000;
rmeddis@0 295 59 51 36 30 41 81 93 2000;
rmeddis@0 296 71 63 53 44 36 76 95 4000;
rmeddis@0 297 70 64 43 35 35 66 88 6000;
rmeddis@0 298 110 110 110 110 110 110 110 8000;
rmeddis@0 299 ];
rmeddis@0 300 if length(BFlist)==1 && ~isempty(comparisonData)
rmeddis@0 301 availableFrequencies=comparisonData(:,end)';
rmeddis@0 302 findRow= find(BFlist==availableFrequencies);
rmeddis@0 303 if ~isempty (findRow)
rmeddis@0 304 experiment.comparisonData=comparisonData(findRow,:);
rmeddis@0 305 end
rmeddis@0 306 end
rmeddis@0 307
rmeddis@0 308 case {'TMC','TMC_8ms'}
rmeddis@0 309 % based on MPa
rmeddis@0 310 comparisonData=[
rmeddis@0 311 48 58 63 68 75 80 85 92 99 250;
rmeddis@0 312 33 39 40 49 52 61 64 77 79 500;
rmeddis@0 313 39 42 50 81 83 92 96 97 110 1000;
rmeddis@0 314 24 26 32 37 46 51 59 71 78 2000;
rmeddis@0 315 65 68 77 85 91 93 110 110 110 4000;
rmeddis@0 316 20 19 26 44 80 95 96 110 110 6000;
rmeddis@0 317 ];
rmeddis@0 318 if length(BFlist)==1 && ~isempty(comparisonData)
rmeddis@0 319 availableFrequencies=comparisonData(:,end)';
rmeddis@0 320 findRow= find(BFlist==availableFrequencies);
rmeddis@0 321 if ~isempty (findRow)
rmeddis@0 322 experiment.comparisonData=comparisonData(findRow,:);
rmeddis@0 323 end
rmeddis@0 324 end
rmeddis@0 325
rmeddis@0 326 case { 'absThreshold', 'absThreshold_8'}
rmeddis@0 327 % MPa thresholds
rmeddis@0 328 experiment.comparisonData=[
rmeddis@0 329 32 26 16 18 22 22 0.008;
rmeddis@0 330 16 13 6 9 15 11 0.500
rmeddis@0 331 ];
rmeddis@0 332
rmeddis@0 333
rmeddis@0 334 otherwise
rmeddis@0 335 experiment.comparisonData=[];
rmeddis@0 336 end
rmeddis@0 337 end
rmeddis@0 338
rmeddis@0 339