annotate Report/references.bib @ 28:a95e656907c3

Updated report
author Paulo Chiliguano <p.e.chiilguano@se14.qmul.ac.uk>
date Mon, 31 Aug 2015 02:43:54 +0100
parents ae650489d3a8
children b1c54790ed97
rev   line source
p@28 1 @inproceedings{gallagher2007bayesian,
p@28 2 title={Bayesian inference in estimation of distribution algorithms},
p@28 3 author={Gallagher, Marcus and Wood, Ian and Keith, Jonathan and Sofronov, George},
p@28 4 booktitle={Evolutionary Computation, 2007. CEC 2007. IEEE Congress on},
p@28 5 pages={127--133},
p@28 6 year={2007},
p@28 7 organization={IEEE}
p@28 8 }
p@28 9 @ARTICLE{Ding2015451,
p@28 10 author={Ding, C. and Ding, L. and Peng, W.},
p@28 11 title={Comparison of effects of different learning methods on estimation of distribution algorithms},
p@28 12 journal={Journal of Software Engineering},
p@28 13 year={2015},
p@28 14 volume={9},
p@28 15 number={3},
p@28 16 pages={451-468},
p@28 17 doi={10.3923/jse.2015.451.468},
p@28 18 note={cited By 0},
p@28 19 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84924609049&partnerID=40&md5=e6419e97e218f8ef1600e3d21e6a9e36},
p@28 20 document_type={Article},
p@28 21 source={Scopus},
p@28 22 }
p@28 23
p@28 24 @ARTICLE{Jin2014113,
p@28 25 author={Jin, C. and Jin, S.-W.},
p@28 26 title={Software reliability prediction model based on support vector regression with improved estimation of distribution algorithms},
p@28 27 journal={Applied Soft Computing Journal},
p@28 28 year={2014},
p@28 29 volume={15},
p@28 30 pages={113-120},
p@28 31 doi={10.1016/j.asoc.2013.10.016},
p@28 32 note={cited By 0},
p@28 33 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84889065631&partnerID=40&md5=6ba595eee679fa8355329646504b3ae3},
p@28 34 document_type={Article},
p@28 35 source={Scopus},
p@28 36 }
p@28 37 @online{1_ufldlstanfordedu_2015,
p@28 38 author={Ufldl.stanford.edu,},
p@28 39 title={Unsupervised Feature Learning and Deep Learning Tutorial},
p@28 40 url={http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/},
p@28 41 urldate={2015-8-30},
p@28 42 year={2015}
p@28 43 }
p@27 44 @online{1_lecun_2015,
p@27 45 author={LeCun, Yann},
p@27 46 title={MNIST Demos on Yann LeCun's website},
p@27 47 url={http://yann.lecun.com/exdb/lenet/},
p@27 48 urldate={2015-8-30},
p@27 49 journal={Yann.lecun.com},
p@27 50 year={2015}
p@27 51 }
p@27 52 @online{1_brown_2014,
p@27 53 author={Brown, Larry},
p@27 54 title={Accelerate Machine Learning with the cuDNN Deep Neural Network Library},
p@27 55 url={http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/},
p@27 56 urldate={2015-8-30},
p@27 57 journal={Parallel Forall},
p@27 58 year={2014}
p@27 59 }
p@27 60
p@27 61 @article{hinton2012deep,
p@27 62 title={Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups},
p@27 63 author={Hinton, Geoffrey and Deng, Li and Yu, Dong and Dahl, George E and Mohamed, Abdel-rahman and Jaitly, Navdeep and Senior, Andrew and Vanhoucke, Vincent and Nguyen, Patrick and Sainath, Tara N and others},
p@27 64 journal={Signal Processing Magazine, IEEE},
p@27 65 volume={29},
p@27 66 number={6},
p@27 67 pages={82--97},
p@27 68 year={2012},
p@27 69 publisher={IEEE}
p@27 70 }
p@27 71 @article{weston2012latent,
p@27 72 title={Latent collaborative retrieval},
p@27 73 author={Weston, Jason and Wang, Chong and Weiss, Ron and Berenzweig, Adam},
p@27 74 journal={arXiv preprint arXiv:1206.4603},
p@27 75 year={2012}
p@27 76 }
p@27 77
p@27 78 @MISC{Bastien-Theano-2012,
p@27 79 author = {Bastien, Fr{\'{e}}d{\'{e}}ric and Lamblin, Pascal and Pascanu, Razvan and Bergstra, James and Goodfellow, Ian J. and Bergeron, Arnaud and Bouchard, Nicolas and Bengio, Yoshua},
p@27 80 title = {Theano: new features and speed improvements},
p@27 81 year = {2012},
p@27 82 howpublished = {Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop},
p@27 83 abstract = {Theano is a linear algebra compiler that optimizes a user’s symbolically-specified
p@27 84 mathematical computations to produce efficient low-level implementations. In
p@27 85 this paper, we present new features and efficiency improvements to Theano, and
p@27 86 benchmarks demonstrating Theano’s performance relative to Torch7, a recently
p@27 87 introduced machine learning library, and to RNNLM, a C++ library targeted at
p@27 88 recurrent neural networks.}
p@27 89 }
p@27 90
p@27 91 @INPROCEEDINGS{bergstra+al:2010-scipy,
p@27 92 author = {Bergstra, James and Breuleux, Olivier and Bastien, Fr{\'{e}}d{\'{e}}ric and Lamblin, Pascal and Pascanu, Razvan and Desjardins, Guillaume and Turian, Joseph and Warde-Farley, David and Bengio, Yoshua},
p@27 93 month = jun,
p@27 94 title = {Theano: a {CPU} and {GPU} Math Expression Compiler},
p@27 95 booktitle = {Proceedings of the Python for Scientific Computing Conference ({SciPy})},
p@27 96 year = {2010},
p@27 97 location = {Austin, TX},
p@27 98 note = {Oral Presentation},
p@27 99 abstract = {Theano is a compiler for mathematical expressions in Python that combines the convenience of NumPy’s syntax with the speed of optimized native machine language. The user composes mathematical expressions in a high-level description that mimics NumPy’s syntax and semantics, while being statically typed and
p@27 100 functional (as opposed to imperative). These expressions allow Theano to provide symbolic differentiation. Before performing computation, Theano optimizes the choice of expressions, translates
p@27 101 them into C++ (or CUDA for GPU), compiles them into dynamically loaded Python modules, all automatically. Common machine learning algorithms implemented with Theano are from 1.6× to 7.5× faster than competitive alternatives (including those implemented with C/C++, NumPy/SciPy and MATLAB) when compiled for the
p@27 102 CPU and between 6.5× and 44× faster when compiled for the GPU. This paper illustrates how to use Theano, outlines the scope of the compiler, provides benchmarks on both CPU and GPU processors, and explains its overall design.}
p@27 103 }
p@27 104
p@27 105 @article{kereliuk15,
p@27 106 title={Deep Learning and Music Adversaries},
p@27 107 author={Kereliuk, Corey and Sturm, Bob L and Larsen, Jan},
p@27 108 journal={arXiv preprint arXiv:1507.04761},
p@27 109 year={2015}
p@27 110 }
p@27 111
p@27 112 @article{DBLP:journals/corr/abs-1305-1114,
p@27 113 author = {Djallel Bouneffouf},
p@27 114 title = {Towards User Profile Modelling in Recommender System},
p@27 115 journal = {CoRR},
p@27 116 volume = {abs/1305.1114},
p@27 117 year = {2013},
p@27 118 url = {http://arxiv.org/abs/1305.1114},
p@27 119 timestamp = {Sun, 02 Jun 2013 20:48:21 +0200},
p@27 120 biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/abs-1305-1114},
p@27 121 bibsource = {dblp computer science bibliography, http://dblp.org}
p@27 122 }
p@27 123
p@27 124 @ARTICLE{Yao2015453,
p@27 125 author={Yao, L. and Sheng, Q.Z. and Ngu, A.H.H. and Yu, J. and Segev, A.},
p@27 126 title={Unified collaborative and content-based web service recommendation},
p@27 127 journal={IEEE Transactions on Services Computing},
p@27 128 year={2015},
p@27 129 volume={8},
p@27 130 number={3},
p@27 131 pages={453-466},
p@27 132 doi={10.1109/TSC.2014.2355842},
p@27 133 art_number={6894179},
p@27 134 note={},
p@27 135 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84932619562&partnerID=40&md5=4483a697e12fc53f620393586f85aebe},
p@27 136 document_type={Article},
p@27 137 source={Scopus},
p@27 138 }
p@27 139 @online{1_blogseagatesoftcom_2015,
p@27 140 author={Blog.seagatesoft.com,},
p@27 141 title={Belajar Sistem Perekomendasi « Corat-coret di Halaman Web},
p@27 142 url={http://blog.seagatesoft.com/2013/07/14/belajar-sistem-perekomendasi/},
p@27 143 urldate={2015-8-29},
p@27 144 year={2015}
p@27 145 }
p@27 146
p@27 147 @inproceedings{sarwar2001item,
p@27 148 title={Item-based collaborative filtering recommendation algorithms},
p@27 149 author={Sarwar, Badrul and Karypis, George and Konstan, Joseph and Riedl, John},
p@27 150 booktitle={Proceedings of the 10th international conference on World Wide Web},
p@27 151 pages={285--295},
p@27 152 year={2001},
p@27 153 organization={ACM}
p@27 154 }
p@27 155
p@27 156 @CONFERENCE{Hu2008263,
p@27 157 author={Hu, Y. and Volinsky, C. and Koren, Y.},
p@27 158 title={Collaborative filtering for implicit feedback datasets},
p@27 159 journal={Proceedings - IEEE International Conference on Data Mining, ICDM},
p@27 160 year={2008},
p@27 161 pages={263-272},
p@27 162 doi={10.1109/ICDM.2008.22},
p@27 163 art_number={4781121},
p@27 164 note={},
p@27 165 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-67049164166&partnerID=40&md5=01238b08208962fd0fdcc7503fa3af99},
p@27 166 document_type={Conference Paper},
p@27 167 source={Scopus},
p@27 168 }
p@27 169
p@27 170 @online{2_the_economist_2005,
p@27 171 author={The Economist,},
p@27 172 title={United we find},
p@27 173 url={http://www.economist.com/node/3714044},
p@27 174 urldate={2015-8-28},
p@27 175 year={2005}
p@27 176 }
p@27 177
p@27 178 @online{1_siddharths_blog_2013,
p@27 179 author={},
p@27 180 title={Recommendation Engine},
p@27 181 url={https://spatnaik77.wordpress.com/2013/07/17/recommendation-engine/},
p@27 182 urldate={2015-8-28},
p@27 183 year={2013}
p@27 184 }
p@27 185
p@27 186 @online{1_deeplearning.net_2015,
p@27 187 author={Deeplearning.net,},
p@27 188 title={Convolutional Neural Networks (LeNet) — DeepLearning 0.1 documentation},
p@27 189 url={http://deeplearning.net/tutorial/lenet.html},
p@27 190 urldate={2015-8-28},
p@27 191 year={2015}
p@27 192 }
p@27 193 @ARTICLE{Casey2008668,
p@27 194 author={Casey, M.A. and Veltkamp, R. and Goto, M. and Leman, M. and Rhodes, C. and Slaney, M.},
p@27 195 title={Content-based music information retrieval: Current directions and future challenges},
p@27 196 journal={Proceedings of the IEEE},
p@27 197 year={2008},
p@27 198 volume={96},
p@27 199 number={4},
p@27 200 pages={668-696},
p@27 201 doi={10.1109/JPROC.2008.916370},
p@27 202 art_number={4472077},
p@27 203 note={},
p@27 204 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-64649105397&partnerID=40&md5=2d8ec7231e10bc686566dd419ce47ae8},
p@27 205 document_type={Article},
p@27 206 source={Scopus},
p@27 207 }
p@27 208
p@27 209 @CONFERENCE{Celma2006,
p@27 210 author={Celma, O. and Herrera, P. and Serra, X.},
p@27 211 title={Bridging the music semantic gap},
p@27 212 journal={CEUR Workshop Proceedings},
p@27 213 year={2006},
p@27 214 volume={187},
p@27 215 page_count={12},
p@27 216 note={},
p@27 217 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84884332226&partnerID=40&md5=d028cb2aca5d2d6d8f25a8a8b555edbf},
p@27 218 document_type={Conference Paper},
p@27 219 source={Scopus},
p@27 220 }
p@27 221
p@27 222 @online{1_spotify_press_2014,
p@27 223 author={},
p@27 224 title={Spotify Acquires The Echo Nest},
p@27 225 url={https://press.spotify.com/us/2014/03/06/spotify-acquires-the-echo-nest/},
p@27 226 urldate={2015-8-27},
p@27 227 year={2014}
p@27 228 }
p@27 229 @article{smith2009social,
p@27 230 title={The social media revolution},
p@27 231 author={Smith, Tom},
p@27 232 journal={International journal of market research},
p@27 233 volume={51},
p@27 234 number={4},
p@27 235 pages={559--561},
p@27 236 year={2009}
p@27 237 }
p@27 238 @article{Putzke2014519,
p@27 239 title = "Cross-cultural gender differences in the adoption and usage of social media platforms – An exploratory study of Last.FM ",
p@27 240 journal = "Computer Networks ",
p@27 241 volume = "75, Part B",
p@27 242 number = "",
p@27 243 pages = "519 - 530",
p@27 244 year = "2014",
p@27 245 note = "Special Issue on Online Social NetworksThe Connectedness, Pervasiveness and Ubiquity of Online Social Networks ",
p@27 246 issn = "1389-1286",
p@27 247 doi = "http://dx.doi.org/10.1016/j.comnet.2014.08.027",
p@27 248 url = "http://www.sciencedirect.com/science/article/pii/S1389128614003302",
p@27 249 author = "Johannes Putzke and Kai Fischbach and Detlef Schoder and Peter A. Gloor",
p@27 250 keywords = "Adoption",
p@27 251 keywords = "Cross-cultural differences",
p@27 252 keywords = "Gender",
p@27 253 keywords = "Social media ",
p@27 254 abstract = "Abstract This paper examines cross-cultural gender differences in the adoption and usage of the social media platform Last.FM. From a large-scale empirical study of 3748 Last.FM users from Australia, Finland, Germany, and the United States of America, we find: (1) men listen to more pieces of music on social media platforms than do women; (2) women focus their listening on fewer musical genres and fewer tracks than do men; (3) women register on Last.FM later than do “early adopting” men (absolutely and in comparison to their friends), but at a younger age; (4) women maintain more virtual friendships on Last.FM than do men; and (5) women, when choosing music to listen to on social media platforms, are more likely than are men to choose tracks that correspond to mainstream tastes. "
p@27 255 }
p@27 256
p@27 257 @CONFERENCE{Park200811,
p@27 258 author={Park, Y.-J. and Tuzhilin, A.},
p@27 259 title={The long tail of recommender systems and how to leverage it},
p@27 260 journal={RecSys'08: Proceedings of the 2008 ACM Conference on Recommender Systems},
p@27 261 year={2008},
p@27 262 pages={11-18},
p@27 263 doi={10.1145/1454008.1454012},
p@27 264 note={},
p@27 265 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-63449136183&partnerID=40&md5=648e50cac2d99764f891b5bc4b97bbfe},
p@27 266 document_type={Conference Paper},
p@27 267 source={Scopus},
p@27 268 }
p@27 269 @CONFERENCE{Dai20141760,
p@27 270 author={Dai, C. and Qian, F. and Jiang, W. and Wang, Z. and Wu, Z.},
p@27 271 title={A personalized recommendation system for netease dating site},
p@27 272 journal={Proceedings of the VLDB Endowment},
p@27 273 year={2014},
p@27 274 volume={7},
p@27 275 number={13},
p@27 276 pages={1760-1765},
p@27 277 note={},
p@27 278 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84905828317&partnerID=40&md5=90fbd8b20ad39757895bdee3ca58f459},
p@27 279 document_type={Article},
p@27 280 source={Scopus},
p@27 281 }
p@27 282
p@27 283 @CONFERENCE{Yin2012896,
p@27 284 author={Yin, H. and Cui, B. and Li, J. and Yao, J. and Chen, C.},
p@27 285 title={Challenging the long tail recommendation},
p@27 286 journal={Proceedings of the VLDB Endowment},
p@27 287 year={2012},
p@27 288 volume={5},
p@27 289 number={9},
p@27 290 pages={896-907},
p@27 291 note={},
p@27 292 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84863735354&partnerID=40&md5=2bd887772ba832fbbb4631afd25514d9},
p@27 293 document_type={Article},
p@27 294 source={Scopus},
p@27 295 }
p@27 296
p@27 297 @online{1_hypebot.com_2015,
p@27 298 author={Hypebot.com,},
p@27 299 title={Streaming Music Discovery: It's More Than Just Showing Album Credits - hypebot},
p@27 300 url={http://www.hypebot.com/hypebot/2015/07/streaming-music-discovery-its-more-than-just-showing-album-credits.html},
p@27 301 urldate={2015-8-26},
p@27 302 year={2015}
p@27 303 }
p@27 304
p@27 305 @online{ringen_2015,
p@27 306 author={Ringen, Jonathan},
p@27 307 title={Spotify, Apple Music, And The Streaming Wars: 5 Things We've Learned},
p@27 308 url={http://www.fastcompany.com/3048653/innovation-agents/listen-up},
p@27 309 urldate={2015-8-26},
p@27 310 journal={Fast Company},
p@27 311 year={2015}
p@27 312 }
p@27 313
p@27 314 @online{recsys2012,
p@27 315 author = {},
p@27 316 title = {Recommender Systems},
p@27 317 year = {2012},
p@27 318 url = {http://recommender-systems.org/},
p@27 319 note = {[Accessed: 26th August 2015]}
p@27 320 }
p@27 321
p@26 322 @article{Hejazi15,
p@26 323 author={Hejazi,S. A. and Stapleton,S. P.},
p@26 324 year={2015},
p@26 325 title={A self-organized network for load balancing using intelligent distributed antenna system},
p@26 326 journal={Canadian Journal of Electrical and Computer Engineering},
p@26 327 volume={38},
p@26 328 number={2},
p@26 329 pages={89-99},
p@26 330 url={www.scopus.com},
p@26 331 }
p@27 332
p@26 333
p@26 334 @book{larranaga2002estimation,
p@26 335 title={Estimation of distribution algorithms: A new tool for evolutionary computation},
p@26 336 author={Larranaga, Pedro and Lozano, Jose A},
p@26 337 volume={2},
p@26 338 year={2002},
p@26 339 publisher={Springer Science \& Business Media}
p@26 340 }
p@26 341
p@26 342 @incollection{melville2010recommender,
p@26 343 title={Recommender systems},
p@26 344 author={Melville, Prem and Sindhwani, Vikas},
p@26 345 booktitle={Encyclopedia of machine learning},
p@26 346 pages={829--838},
p@26 347 year={2010},
p@26 348 publisher={Springer}
p@26 349 }
p@26 350
p@20 351 @incollection{Lops2011,
p@20 352 year={2011},
p@20 353 isbn={978-0-387-85819-7},
p@20 354 booktitle={Recommender Systems Handbook},
p@20 355 editor={Ricci, Francesco and Rokach, Lior and Shapira, Bracha and Kantor, Paul B.},
p@20 356 doi={10.1007/978-0-387-85820-3_3},
p@20 357 title={Content-based Recommender Systems: State of the Art and Trends},
p@27 358 url={http://dx.doi.org/10.1007/978-0-387-85820-3_3},
p@20 359 publisher={Springer US},
p@20 360 author={Lops, Pasquale and de Gemmis, Marco and Semeraro, Giovanni},
p@20 361 pages={73-105},
p@20 362 language={English}
p@20 363 }
p@20 364
p@20 365 @ARTICLE{Burke2002331,
p@20 366 author={Burke, R.},
p@20 367 title={Hybrid recommender systems: Survey and experiments},
p@20 368 journal={User Modelling and User-Adapted Interaction},
p@20 369 year={2002},
p@20 370 volume={12},
p@20 371 number={4},
p@20 372 pages={331-370},
p@20 373 doi={10.1023/A:1021240730564},
p@27 374 note={},
p@27 375 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-0036959356&partnerID=40&md5=28885a102109be826507abc2435117a7},
p@20 376 document_type={Article},
p@20 377 source={Scopus},
p@20 378 }
p@20 379
p@20 380 @ARTICLE{Yoshii2008435,
p@20 381 author={Yoshii, K. and Goto, M. and Komatani, K. and Ogata, T. and Okuno, H.G.},
p@20 382 title={An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model},
p@20 383 journal={IEEE Transactions on Audio, Speech and Language Processing},
p@20 384 year={2008},
p@20 385 volume={16},
p@20 386 number={2},
p@20 387 pages={435-447},
p@20 388 doi={10.1109/TASL.2007.911503},
p@20 389 art_number={4432655},
p@27 390 note={},
p@27 391 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-39649112098&partnerID=40&md5=6827f82844ae1da58a6fa95caf5092d9},
p@20 392 document_type={Article},
p@20 393 source={Scopus},
p@20 394 }
p@20 395
p@20 396
p@20 397 @article{JCC4:JCC4393,
p@20 398 author = {boyd, danah m. and Ellison, Nicole B.},
p@20 399 title = {Social Network Sites: Definition, History, and Scholarship},
p@20 400 journal = {Journal of Computer-Mediated Communication},
p@20 401 volume = {13},
p@20 402 number = {1},
p@20 403 publisher = {Blackwell Publishing Inc},
p@20 404 issn = {1083-6101},
p@20 405 url = {http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x},
p@20 406 doi = {10.1111/j.1083-6101.2007.00393.x},
p@20 407 pages = {210--230},
p@20 408 year = {2007},
p@20 409 }
p@20 410
p@20 411 @ARTICLE{Castanedo2013,
p@20 412 author={Castanedo, F.},
p@20 413 title={A review of data fusion techniques},
p@20 414 journal={The Scientific World Journal},
p@20 415 year={2013},
p@20 416 volume={2013},
p@20 417 doi={10.1155/2013/704504},
p@20 418 art_number={704504},
p@27 419 note={},
p@27 420 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84888882639&partnerID=40&md5=827fabc750db24f662fdae1c798f2507},
p@20 421 document_type={Review},
p@20 422 source={Scopus},
p@20 423 }
p@20 424
p@20 425
p@20 426 @CONFERENCE{Lee20091096,
p@20 427 author={Lee, H. and Yan, L. and Pham, P. and Ng, A.Y.},
p@20 428 title={Unsupervised feature learning for audio classification using convolutional deep belief networks},
p@20 429 journal={Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference},
p@20 430 year={2009},
p@20 431 pages={1096-1104},
p@27 432 note={},
p@27 433 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84863380535&partnerID=40&md5=e872a6227c816850167f91bb2d41d8b7},
p@20 434 document_type={Conference Paper},
p@20 435 source={Scopus},
p@20 436 }
p@20 437
p@20 438
p@20 439 @TechReport {export:115396,
p@20 440 abstract = {<p>Recommender systems are now popular both commercially and in the research
p@20 441 community, where many approaches have been suggested for providing
p@20 442 recommendations. In many cases a system designer that wishes to employ a
p@20 443 recommendation system must choose between a set of candidate approaches. A first
p@20 444 step towards selecting an appropriate algorithm is to decide which properties of
p@20 445 the application to focus upon when making this choice. Indeed, recommendation
p@20 446 systems have a variety of properties that may affect user experience, such as
p@20 447 accuracy, robustness, scalability, and so forth. In this paper we discuss how to
p@20 448 compare recommenders based on a set of properties that are relevant for e
p@20 449 application. We focus on comparative studies, where a few algorithms are compared
p@20 450 using some evaluation metric, rather than absolute benchmarking of algorithms. We
p@20 451 describe experimental settings appropriate for making choices between algorithms.
p@20 452 We review three types of experiments, starting with an offline setting, where
p@20 453 recommendation approaches are compared without user interaction, then reviewing
p@20 454 user studies, where a small group of subjects experiment with the system and
p@20 455 report on the experience, and finally describe large scale online experiments,
p@20 456 where real user populations interact with the system. In each of these cases we
p@20 457 describe types of questions that can be answered, and suggest protocols for
p@20 458 experimentation. We also discuss how to draw trustworthy conclusions from e
p@20 459 conducted experiments. We then review a large set of properties, and explain how
p@20 460 to evaluate systems given relevant properties. We also survey a large set of
p@20 461 evaluation metrics in the context of the property that they evaluate.</p>},
p@20 462 author = {Guy Shani and Asela Gunawardana},
p@20 463 month = {November},
p@20 464 number = {MSR-TR-2009-159},
p@20 465 publisher = {Microsoft Research},
p@20 466 title = {Evaluating Recommender Systems},
p@20 467 url = {http://research.microsoft.com/apps/pubs/default.aspx?id=115396},
p@20 468 year = {2009},
p@20 469 }
p@20 470
p@20 471 @phdthesis {1242,
p@20 472 title = {Music Recommendation and Discovery in the Long Tail},
p@20 473 year = {2008},
p@20 474 school = {Universitat Pompeu Fabra},
p@20 475 address = {Barcelona},
p@20 476 abstract = {<p class="small">
p@20 477 Music consumption is biased towards a few popular artists. For instance, in 2007 only 1\% of
p@20 478 all digital tracks accounted for 80\% of all sales. Similarly, 1,000 albums accounted for 50\%
p@20 479 of all album sales, and 80\% of all albums sold were purchased less than 100 times. There is
p@20 480 a need to assist people to filter, discover, personalise and recommend from the huge amount
p@20 481 of music content available along the Long Tail.
p@20 482 </p>
p@20 483 <p class="small">
p@20 484 Current music recommendation algorithms try to
p@20 485 accurately predict what people demand to listen to. However, quite
p@20 486 often these algorithms tend to recommend popular -or well-known to the
p@20 487 user- music, decreasing the effectiveness of the recommendations. These
p@20 488 approaches focus on improving the accuracy of the recommendations. That
p@20 489 is, try to make
p@20 490 accurate predictions about what a user could listen to, or buy next,
p@20 491 independently of how
p@20 492 useful to the user could be the provided recommendations.
p@20 493 </p>
p@20 494 <p class="small">
p@20 495 In this Thesis we stress the importance of the user{\textquoteright}s
p@20 496 perceived quality of the recommendations. We model the Long Tail curve
p@20 497 of artist popularity to predict -potentially-
p@20 498 interesting and unknown music, hidden in the tail of the popularity
p@20 499 curve. Effective recommendation systems should promote novel and
p@20 500 relevant material (non-obvious recommendations), taken primarily from
p@20 501 the tail of a popularity distribution.
p@20 502 </p>
p@20 503 <p class="small">
p@20 504 The main contributions of this Thesis are: <em>(i)</em> a novel network-based approach for
p@20 505 recommender systems, based on the analysis of the item (or user) similarity graph, and the
p@20 506 popularity of the items, <em>(ii)</em> a user-centric evaluation that measures the user{\textquoteright}s relevance
p@20 507 and novelty of the recommendations, and <em>(iii)</em> two prototype systems that implement the
p@20 508 ideas derived from the theoretical work. Our findings have significant implications for
p@20 509 recommender systems that assist users to explore the Long Tail, digging for content they
p@20 510 might like.
p@20 511 </p>
p@20 512 },
p@27 513 url = {http://mtg.upf.edu/static/media/PhD_ocelma.pdf},
p@27 514 author = {Celma, \`{O}.}
p@20 515 }
p@21 516
p@21 517 @inproceedings{pachet2001musical,
p@21 518 title={Musical data mining for electronic music distribution},
p@21 519 author={Pachet, Fran{\c{c}}ois and Westermann, Gert and Laigre, Damien},
p@21 520 booktitle={Web Delivering of Music, 2001. Proceedings. First International Conference on},
p@21 521 pages={101--106},
p@21 522 year={2001},
p@21 523 organization={IEEE}
p@21 524 }
p@21 525
p@21 526 @ARTICLE{Tzanetakis2002293,
p@21 527 author={Tzanetakis, G. and Cook, P.},
p@21 528 title={Musical genre classification of audio signals},
p@21 529 journal={IEEE Transactions on Speech and Audio Processing},
p@21 530 year={2002},
p@21 531 volume={10},
p@21 532 number={5},
p@21 533 pages={293-302},
p@21 534 doi={10.1109/TSA.2002.800560},
p@27 535 note={},
p@27 536 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-0036648502&partnerID=40&md5=72d2fee186b42c9998f13415cbb79eea},
p@21 537 document_type={Article},
p@21 538 source={Scopus},
p@21 539 }
p@21 540
p@21 541 @CONFERENCE{Sturm20127,
p@21 542 author={Sturm, B.L.},
p@21 543 title={An analysis of the GTZAN music genre dataset},
p@21 544 journal={MIRUM 2012 - Proceedings of the 2nd International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies, Co-located with ACM Multimedia 2012},
p@21 545 year={2012},
p@21 546 pages={7-12},
p@21 547 doi={10.1145/2390848.2390851},
p@27 548 note={},
p@27 549 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84870497334&partnerID=40&md5=40a48c1c9d787308dd315694b54b64ec},
p@21 550 document_type={Conference Paper},
p@21 551 source={Scopus},
p@21 552 }
p@21 553
p@21 554 @unpublished{Bengio-et-al-2015-Book,
p@21 555 title={Deep Learning},
p@21 556 author={Yoshua Bengio and Ian J. Goodfellow and Aaron Courville},
p@21 557 note={Book in preparation for MIT Press},
p@21 558 url={http://www.iro.umontreal.ca/~bengioy/dlbook},
p@21 559 year={2015}
p@21 560 }
p@21 561
p@21 562 @CONFERENCE{Sigtia20146959,
p@21 563 author={Sigtia, S. and Dixon, S.},
p@21 564 title={Improved music feature learning with deep neural networks},
p@21 565 journal={ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings},
p@21 566 year={2014},
p@21 567 pages={6959-6963},
p@21 568 doi={10.1109/ICASSP.2014.6854949},
p@21 569 art_number={6854949},
p@27 570 note={},
p@27 571 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84905259152&partnerID=40&md5=3441dfa8c7998a8eb39f668d43efb8a1},
p@21 572 document_type={Conference Paper},
p@21 573 source={Scopus},
p@21 574 }
p@21 575
p@21 576 @incollection{NIPS2013_5004,
p@21 577 title = {Deep content-based music recommendation},
p@21 578 author = {van den Oord, Aaron and Dieleman, Sander and Schrauwen, Benjamin},
p@21 579 booktitle = {Advances in Neural Information Processing Systems 26},
p@21 580 editor = {C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger},
p@21 581 pages = {2643--2651},
p@21 582 year = {2013},
p@21 583 publisher = {Curran Associates, Inc.},
p@21 584 url = {http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf}
p@21 585 }
p@21 586
p@21 587 @incollection{pelikan2015estimation,
p@21 588 title={Estimation of Distribution Algorithms},
p@21 589 author={Pelikan, Martin and Hauschild, Mark W and Lobo, Fernando G},
p@21 590 booktitle={Springer Handbook of Computational Intelligence},
p@21 591 pages={899--928},
p@21 592 year={2015},
p@21 593 publisher={Springer}
p@21 594 }
p@21 595
p@21 596 @article{Santana:Bielza:Larrañaga:Lozano:Echegoyen:Mendiburu:Armañanzas:Shakya:2009:JSSOBK:v35i07,
p@21 597 author = "Roberto Santana and Concha Bielza and Pedro Larrañaga and Jose A. Lozano and Carlos Echegoyen and Alexander Mendiburu and Rubén Armañanzas and Siddartha Shakya",
p@21 598 title = "Mateda-2.0: A MATLAB Package for the Implementation and Analysis of Estimation of Distribution Algorithms",
p@21 599 journal = "Journal of Statistical Software",
p@21 600 volume = "35",
p@21 601 number = "7",
p@21 602 pages = "1--30",
p@21 603 day = "26",
p@21 604 month = "7",
p@21 605 year = "2010",
p@21 606 CODEN = "JSSOBK",
p@21 607 ISSN = "1548-7660",
p@21 608 bibdate = "2009-12-17",
p@21 609 URL = "http://www.jstatsoft.org/v35/i07",
p@21 610 accepted = "2009-12-17",
p@21 611 acknowledgement = "",
p@21 612 keywords = "",
p@21 613 submitted = "2009-04-15",
p@21 614 }
p@21 615
p@21 616 @ARTICLE{Liang2014781,
p@21 617 author={Liang, T. and Liang, Y. and Fan, J. and Zhao, J.},
p@21 618 title={A hybrid recommendation model based on estimation of distribution algorithms},
p@21 619 journal={Journal of Computational Information Systems},
p@21 620 year={2014},
p@21 621 volume={10},
p@21 622 number={2},
p@21 623 pages={781-788},
p@21 624 doi={10.12733/jcis9623},
p@27 625 note={},
p@27 626 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84892865461&partnerID=40&md5=a2927d36b493e8ef4d1cdab3055fa68b},
p@21 627 document_type={Article},
p@21 628 source={Scopus},
p@21 629 }
p@21 630
p@21 631 @INPROCEEDINGS{Bertin-Mahieux2011,
p@21 632 author = {Thierry Bertin-Mahieux and Daniel P.W. Ellis and Brian Whitman and Paul Lamere},
p@21 633 title = {The Million Song Dataset},
p@21 634 booktitle = {{Proceedings of the 12th International Conference on Music Information
p@21 635 Retrieval ({ISMIR} 2011)}},
p@21 636 year = {2011},
p@21 637 owner = {thierry},
p@21 638 timestamp = {2010.03.07}
p@21 639 }
p@21 640
p@21 641 @inproceedings{zhang2014deep,
p@21 642 title={A deep representation for invariance and music classification},
p@21 643 author={Zhang, Chiyuan and Evangelopoulos, Georgios and Voinea, Stephen and Rosasco, Lorenzo and Poggio, Tomaso},
p@21 644 booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on},
p@21 645 pages={6984--6988},
p@21 646 year={2014},
p@21 647 organization={IEEE}
p@21 648 }