annotate Report/references.bib @ 21:e68dbee1f6db

Modified code New datasets Updated report
author Paulo Chiliguano <p.e.chiilguano@se14.qmul.ac.uk>
date Tue, 11 Aug 2015 10:50:36 +0100
parents 1dbd24575d44
children e4bcfe00abf4
rev   line source
p@20 1 @incollection{Lops2011,
p@20 2 year={2011},
p@20 3 isbn={978-0-387-85819-7},
p@20 4 booktitle={Recommender Systems Handbook},
p@20 5 editor={Ricci, Francesco and Rokach, Lior and Shapira, Bracha and Kantor, Paul B.},
p@20 6 doi={10.1007/978-0-387-85820-3_3},
p@20 7 title={Content-based Recommender Systems: State of the Art and Trends},
p@20 8 url={http://dx.doi.org/10.1007/978-0-387-85820-3\_3},
p@20 9 publisher={Springer US},
p@20 10 author={Lops, Pasquale and de Gemmis, Marco and Semeraro, Giovanni},
p@20 11 pages={73-105},
p@20 12 language={English}
p@20 13 }
p@20 14
p@20 15 @ARTICLE{Burke2002331,
p@20 16 author={Burke, R.},
p@20 17 title={Hybrid recommender systems: Survey and experiments},
p@20 18 journal={User Modelling and User-Adapted Interaction},
p@20 19 year={2002},
p@20 20 volume={12},
p@20 21 number={4},
p@20 22 pages={331-370},
p@20 23 doi={10.1023/A:1021240730564},
p@20 24 note={cited By 0},
p@20 25 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-0036959356\&partnerID=40\&md5=28885a102109be826507abc2435117a7},
p@20 26 document_type={Article},
p@20 27 source={Scopus},
p@20 28 }
p@20 29
p@20 30 @ARTICLE{Yoshii2008435,
p@20 31 author={Yoshii, K. and Goto, M. and Komatani, K. and Ogata, T. and Okuno, H.G.},
p@20 32 title={An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model},
p@20 33 journal={IEEE Transactions on Audio, Speech and Language Processing},
p@20 34 year={2008},
p@20 35 volume={16},
p@20 36 number={2},
p@20 37 pages={435-447},
p@20 38 doi={10.1109/TASL.2007.911503},
p@20 39 art_number={4432655},
p@20 40 note={cited By 0},
p@20 41 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-39649112098\&partnerID=40\&md5=6827f82844ae1da58a6fa95caf5092d9},
p@20 42 document_type={Article},
p@20 43 source={Scopus},
p@20 44 }
p@20 45
p@20 46
p@20 47 @article{JCC4:JCC4393,
p@20 48 author = {boyd, danah m. and Ellison, Nicole B.},
p@20 49 title = {Social Network Sites: Definition, History, and Scholarship},
p@20 50 journal = {Journal of Computer-Mediated Communication},
p@20 51 volume = {13},
p@20 52 number = {1},
p@20 53 publisher = {Blackwell Publishing Inc},
p@20 54 issn = {1083-6101},
p@20 55 url = {http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x},
p@20 56 doi = {10.1111/j.1083-6101.2007.00393.x},
p@20 57 pages = {210--230},
p@20 58 year = {2007},
p@20 59 }
p@20 60
p@20 61 @ARTICLE{Castanedo2013,
p@20 62 author={Castanedo, F.},
p@20 63 title={A review of data fusion techniques},
p@20 64 journal={The Scientific World Journal},
p@20 65 year={2013},
p@20 66 volume={2013},
p@20 67 doi={10.1155/2013/704504},
p@20 68 art_number={704504},
p@20 69 note={cited By 0},
p@20 70 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84888882639\&partnerID=40\&md5=827fabc750db24f662fdae1c798f2507},
p@20 71 document_type={Review},
p@20 72 source={Scopus},
p@20 73 }
p@20 74
p@20 75
p@20 76 @CONFERENCE{Lee20091096,
p@20 77 author={Lee, H. and Yan, L. and Pham, P. and Ng, A.Y.},
p@20 78 title={Unsupervised feature learning for audio classification using convolutional deep belief networks},
p@20 79 journal={Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference},
p@20 80 year={2009},
p@20 81 pages={1096-1104},
p@20 82 note={cited By 0},
p@20 83 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84863380535\&partnerID=40\&md5=e872a6227c816850167f91bb2d41d8b7},
p@20 84 document_type={Conference Paper},
p@20 85 source={Scopus},
p@20 86 }
p@20 87
p@20 88
p@20 89 @TechReport {export:115396,
p@20 90 abstract = {<p>Recommender systems are now popular both commercially and in the research
p@20 91 community, where many approaches have been suggested for providing
p@20 92 recommendations. In many cases a system designer that wishes to employ a
p@20 93 recommendation system must choose between a set of candidate approaches. A first
p@20 94 step towards selecting an appropriate algorithm is to decide which properties of
p@20 95 the application to focus upon when making this choice. Indeed, recommendation
p@20 96 systems have a variety of properties that may affect user experience, such as
p@20 97 accuracy, robustness, scalability, and so forth. In this paper we discuss how to
p@20 98 compare recommenders based on a set of properties that are relevant for e
p@20 99 application. We focus on comparative studies, where a few algorithms are compared
p@20 100 using some evaluation metric, rather than absolute benchmarking of algorithms. We
p@20 101 describe experimental settings appropriate for making choices between algorithms.
p@20 102 We review three types of experiments, starting with an offline setting, where
p@20 103 recommendation approaches are compared without user interaction, then reviewing
p@20 104 user studies, where a small group of subjects experiment with the system and
p@20 105 report on the experience, and finally describe large scale online experiments,
p@20 106 where real user populations interact with the system. In each of these cases we
p@20 107 describe types of questions that can be answered, and suggest protocols for
p@20 108 experimentation. We also discuss how to draw trustworthy conclusions from e
p@20 109 conducted experiments. We then review a large set of properties, and explain how
p@20 110 to evaluate systems given relevant properties. We also survey a large set of
p@20 111 evaluation metrics in the context of the property that they evaluate.</p>},
p@20 112 author = {Guy Shani and Asela Gunawardana},
p@20 113 month = {November},
p@20 114 number = {MSR-TR-2009-159},
p@20 115 publisher = {Microsoft Research},
p@20 116 title = {Evaluating Recommender Systems},
p@20 117 url = {http://research.microsoft.com/apps/pubs/default.aspx?id=115396},
p@20 118 year = {2009},
p@20 119 }
p@20 120
p@20 121 @phdthesis {1242,
p@20 122 title = {Music Recommendation and Discovery in the Long Tail},
p@20 123 year = {2008},
p@20 124 school = {Universitat Pompeu Fabra},
p@20 125 address = {Barcelona},
p@20 126 abstract = {<p class="small">
p@20 127 Music consumption is biased towards a few popular artists. For instance, in 2007 only 1\% of
p@20 128 all digital tracks accounted for 80\% of all sales. Similarly, 1,000 albums accounted for 50\%
p@20 129 of all album sales, and 80\% of all albums sold were purchased less than 100 times. There is
p@20 130 a need to assist people to filter, discover, personalise and recommend from the huge amount
p@20 131 of music content available along the Long Tail.
p@20 132 </p>
p@20 133 <p class="small">
p@20 134 Current music recommendation algorithms try to
p@20 135 accurately predict what people demand to listen to. However, quite
p@20 136 often these algorithms tend to recommend popular -or well-known to the
p@20 137 user- music, decreasing the effectiveness of the recommendations. These
p@20 138 approaches focus on improving the accuracy of the recommendations. That
p@20 139 is, try to make
p@20 140 accurate predictions about what a user could listen to, or buy next,
p@20 141 independently of how
p@20 142 useful to the user could be the provided recommendations.
p@20 143 </p>
p@20 144 <p class="small">
p@20 145 In this Thesis we stress the importance of the user{\textquoteright}s
p@20 146 perceived quality of the recommendations. We model the Long Tail curve
p@20 147 of artist popularity to predict -potentially-
p@20 148 interesting and unknown music, hidden in the tail of the popularity
p@20 149 curve. Effective recommendation systems should promote novel and
p@20 150 relevant material (non-obvious recommendations), taken primarily from
p@20 151 the tail of a popularity distribution.
p@20 152 </p>
p@20 153 <p class="small">
p@20 154 The main contributions of this Thesis are: <em>(i)</em> a novel network-based approach for
p@20 155 recommender systems, based on the analysis of the item (or user) similarity graph, and the
p@20 156 popularity of the items, <em>(ii)</em> a user-centric evaluation that measures the user{\textquoteright}s relevance
p@20 157 and novelty of the recommendations, and <em>(iii)</em> two prototype systems that implement the
p@20 158 ideas derived from the theoretical work. Our findings have significant implications for
p@20 159 recommender systems that assist users to explore the Long Tail, digging for content they
p@20 160 might like.
p@20 161 </p>
p@20 162 },
p@20 163 url = {http://mtg.upf.edu/static/media/PhD\_ocelma.pdf},
p@20 164 author = {Celma, \{`O}.},
p@20 165 }
p@21 166
p@21 167 @inproceedings{pachet2001musical,
p@21 168 title={Musical data mining for electronic music distribution},
p@21 169 author={Pachet, Fran{\c{c}}ois and Westermann, Gert and Laigre, Damien},
p@21 170 booktitle={Web Delivering of Music, 2001. Proceedings. First International Conference on},
p@21 171 pages={101--106},
p@21 172 year={2001},
p@21 173 organization={IEEE}
p@21 174 }
p@21 175
p@21 176 @ARTICLE{Tzanetakis2002293,
p@21 177 author={Tzanetakis, G. and Cook, P.},
p@21 178 title={Musical genre classification of audio signals},
p@21 179 journal={IEEE Transactions on Speech and Audio Processing},
p@21 180 year={2002},
p@21 181 volume={10},
p@21 182 number={5},
p@21 183 pages={293-302},
p@21 184 doi={10.1109/TSA.2002.800560},
p@21 185 note={cited By 976},
p@21 186 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-0036648502\&partnerID=40\&md5=72d2fee186b42c9998f13415cbb79eea},
p@21 187 document_type={Article},
p@21 188 source={Scopus},
p@21 189 }
p@21 190
p@21 191 @CONFERENCE{Sturm20127,
p@21 192 author={Sturm, B.L.},
p@21 193 title={An analysis of the GTZAN music genre dataset},
p@21 194 journal={MIRUM 2012 - Proceedings of the 2nd International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies, Co-located with ACM Multimedia 2012},
p@21 195 year={2012},
p@21 196 pages={7-12},
p@21 197 doi={10.1145/2390848.2390851},
p@21 198 note={cited By 0},
p@21 199 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84870497334\&partnerID=40\&md5=40a48c1c9d787308dd315694b54b64ec},
p@21 200 document_type={Conference Paper},
p@21 201 source={Scopus},
p@21 202 }
p@21 203
p@21 204 @unpublished{Bengio-et-al-2015-Book,
p@21 205 title={Deep Learning},
p@21 206 author={Yoshua Bengio and Ian J. Goodfellow and Aaron Courville},
p@21 207 note={Book in preparation for MIT Press},
p@21 208 url={http://www.iro.umontreal.ca/~bengioy/dlbook},
p@21 209 year={2015}
p@21 210 }
p@21 211
p@21 212 @CONFERENCE{Sigtia20146959,
p@21 213 author={Sigtia, S. and Dixon, S.},
p@21 214 title={Improved music feature learning with deep neural networks},
p@21 215 journal={ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings},
p@21 216 year={2014},
p@21 217 pages={6959-6963},
p@21 218 doi={10.1109/ICASSP.2014.6854949},
p@21 219 art_number={6854949},
p@21 220 note={cited By 0},
p@21 221 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84905259152\&partnerID=40\&md5=3441dfa8c7998a8eb39f668d43efb8a1},
p@21 222 document_type={Conference Paper},
p@21 223 source={Scopus},
p@21 224 }
p@21 225
p@21 226 @incollection{NIPS2013_5004,
p@21 227 title = {Deep content-based music recommendation},
p@21 228 author = {van den Oord, Aaron and Dieleman, Sander and Schrauwen, Benjamin},
p@21 229 booktitle = {Advances in Neural Information Processing Systems 26},
p@21 230 editor = {C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger},
p@21 231 pages = {2643--2651},
p@21 232 year = {2013},
p@21 233 publisher = {Curran Associates, Inc.},
p@21 234 url = {http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf}
p@21 235 }
p@21 236
p@21 237 @incollection{pelikan2015estimation,
p@21 238 title={Estimation of Distribution Algorithms},
p@21 239 author={Pelikan, Martin and Hauschild, Mark W and Lobo, Fernando G},
p@21 240 booktitle={Springer Handbook of Computational Intelligence},
p@21 241 pages={899--928},
p@21 242 year={2015},
p@21 243 publisher={Springer}
p@21 244 }
p@21 245
p@21 246 @article{Santana:Bielza:Larrañaga:Lozano:Echegoyen:Mendiburu:Armañanzas:Shakya:2009:JSSOBK:v35i07,
p@21 247 author = "Roberto Santana and Concha Bielza and Pedro Larrañaga and Jose A. Lozano and Carlos Echegoyen and Alexander Mendiburu and Rubén Armañanzas and Siddartha Shakya",
p@21 248 title = "Mateda-2.0: A MATLAB Package for the Implementation and Analysis of Estimation of Distribution Algorithms",
p@21 249 journal = "Journal of Statistical Software",
p@21 250 volume = "35",
p@21 251 number = "7",
p@21 252 pages = "1--30",
p@21 253 day = "26",
p@21 254 month = "7",
p@21 255 year = "2010",
p@21 256 CODEN = "JSSOBK",
p@21 257 ISSN = "1548-7660",
p@21 258 bibdate = "2009-12-17",
p@21 259 URL = "http://www.jstatsoft.org/v35/i07",
p@21 260 accepted = "2009-12-17",
p@21 261 acknowledgement = "",
p@21 262 keywords = "",
p@21 263 submitted = "2009-04-15",
p@21 264 }
p@21 265
p@21 266 @ARTICLE{Liang2014781,
p@21 267 author={Liang, T. and Liang, Y. and Fan, J. and Zhao, J.},
p@21 268 title={A hybrid recommendation model based on estimation of distribution algorithms},
p@21 269 journal={Journal of Computational Information Systems},
p@21 270 year={2014},
p@21 271 volume={10},
p@21 272 number={2},
p@21 273 pages={781-788},
p@21 274 doi={10.12733/jcis9623},
p@21 275 note={cited By 0},
p@21 276 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84892865461\&partnerID=40\&md5=a2927d36b493e8ef4d1cdab3055fa68b},
p@21 277 document_type={Article},
p@21 278 source={Scopus},
p@21 279 }
p@21 280
p@21 281 @INPROCEEDINGS{Bertin-Mahieux2011,
p@21 282 author = {Thierry Bertin-Mahieux and Daniel P.W. Ellis and Brian Whitman and Paul Lamere},
p@21 283 title = {The Million Song Dataset},
p@21 284 booktitle = {{Proceedings of the 12th International Conference on Music Information
p@21 285 Retrieval ({ISMIR} 2011)}},
p@21 286 year = {2011},
p@21 287 owner = {thierry},
p@21 288 timestamp = {2010.03.07}
p@21 289 }
p@21 290
p@21 291 @inproceedings{zhang2014deep,
p@21 292 title={A deep representation for invariance and music classification},
p@21 293 author={Zhang, Chiyuan and Evangelopoulos, Georgios and Voinea, Stephen and Rosasco, Lorenzo and Poggio, Tomaso},
p@21 294 booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on},
p@21 295 pages={6984--6988},
p@21 296 year={2014},
p@21 297 organization={IEEE}
p@21 298 }