p@20
|
1 @incollection{Lops2011,
|
p@20
|
2 year={2011},
|
p@20
|
3 isbn={978-0-387-85819-7},
|
p@20
|
4 booktitle={Recommender Systems Handbook},
|
p@20
|
5 editor={Ricci, Francesco and Rokach, Lior and Shapira, Bracha and Kantor, Paul B.},
|
p@20
|
6 doi={10.1007/978-0-387-85820-3_3},
|
p@20
|
7 title={Content-based Recommender Systems: State of the Art and Trends},
|
p@20
|
8 url={http://dx.doi.org/10.1007/978-0-387-85820-3\_3},
|
p@20
|
9 publisher={Springer US},
|
p@20
|
10 author={Lops, Pasquale and de Gemmis, Marco and Semeraro, Giovanni},
|
p@20
|
11 pages={73-105},
|
p@20
|
12 language={English}
|
p@20
|
13 }
|
p@20
|
14
|
p@20
|
15 @ARTICLE{Burke2002331,
|
p@20
|
16 author={Burke, R.},
|
p@20
|
17 title={Hybrid recommender systems: Survey and experiments},
|
p@20
|
18 journal={User Modelling and User-Adapted Interaction},
|
p@20
|
19 year={2002},
|
p@20
|
20 volume={12},
|
p@20
|
21 number={4},
|
p@20
|
22 pages={331-370},
|
p@20
|
23 doi={10.1023/A:1021240730564},
|
p@20
|
24 note={cited By 0},
|
p@20
|
25 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-0036959356\&partnerID=40\&md5=28885a102109be826507abc2435117a7},
|
p@20
|
26 document_type={Article},
|
p@20
|
27 source={Scopus},
|
p@20
|
28 }
|
p@20
|
29
|
p@20
|
30 @ARTICLE{Yoshii2008435,
|
p@20
|
31 author={Yoshii, K. and Goto, M. and Komatani, K. and Ogata, T. and Okuno, H.G.},
|
p@20
|
32 title={An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model},
|
p@20
|
33 journal={IEEE Transactions on Audio, Speech and Language Processing},
|
p@20
|
34 year={2008},
|
p@20
|
35 volume={16},
|
p@20
|
36 number={2},
|
p@20
|
37 pages={435-447},
|
p@20
|
38 doi={10.1109/TASL.2007.911503},
|
p@20
|
39 art_number={4432655},
|
p@20
|
40 note={cited By 0},
|
p@20
|
41 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-39649112098\&partnerID=40\&md5=6827f82844ae1da58a6fa95caf5092d9},
|
p@20
|
42 document_type={Article},
|
p@20
|
43 source={Scopus},
|
p@20
|
44 }
|
p@20
|
45
|
p@20
|
46
|
p@20
|
47 @article{JCC4:JCC4393,
|
p@20
|
48 author = {boyd, danah m. and Ellison, Nicole B.},
|
p@20
|
49 title = {Social Network Sites: Definition, History, and Scholarship},
|
p@20
|
50 journal = {Journal of Computer-Mediated Communication},
|
p@20
|
51 volume = {13},
|
p@20
|
52 number = {1},
|
p@20
|
53 publisher = {Blackwell Publishing Inc},
|
p@20
|
54 issn = {1083-6101},
|
p@20
|
55 url = {http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x},
|
p@20
|
56 doi = {10.1111/j.1083-6101.2007.00393.x},
|
p@20
|
57 pages = {210--230},
|
p@20
|
58 year = {2007},
|
p@20
|
59 }
|
p@20
|
60
|
p@20
|
61 @ARTICLE{Castanedo2013,
|
p@20
|
62 author={Castanedo, F.},
|
p@20
|
63 title={A review of data fusion techniques},
|
p@20
|
64 journal={The Scientific World Journal},
|
p@20
|
65 year={2013},
|
p@20
|
66 volume={2013},
|
p@20
|
67 doi={10.1155/2013/704504},
|
p@20
|
68 art_number={704504},
|
p@20
|
69 note={cited By 0},
|
p@20
|
70 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84888882639\&partnerID=40\&md5=827fabc750db24f662fdae1c798f2507},
|
p@20
|
71 document_type={Review},
|
p@20
|
72 source={Scopus},
|
p@20
|
73 }
|
p@20
|
74
|
p@20
|
75
|
p@20
|
76 @CONFERENCE{Lee20091096,
|
p@20
|
77 author={Lee, H. and Yan, L. and Pham, P. and Ng, A.Y.},
|
p@20
|
78 title={Unsupervised feature learning for audio classification using convolutional deep belief networks},
|
p@20
|
79 journal={Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference},
|
p@20
|
80 year={2009},
|
p@20
|
81 pages={1096-1104},
|
p@20
|
82 note={cited By 0},
|
p@20
|
83 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84863380535\&partnerID=40\&md5=e872a6227c816850167f91bb2d41d8b7},
|
p@20
|
84 document_type={Conference Paper},
|
p@20
|
85 source={Scopus},
|
p@20
|
86 }
|
p@20
|
87
|
p@20
|
88
|
p@20
|
89 @TechReport {export:115396,
|
p@20
|
90 abstract = {<p>Recommender systems are now popular both commercially and in the research
|
p@20
|
91 community, where many approaches have been suggested for providing
|
p@20
|
92 recommendations. In many cases a system designer that wishes to employ a
|
p@20
|
93 recommendation system must choose between a set of candidate approaches. A first
|
p@20
|
94 step towards selecting an appropriate algorithm is to decide which properties of
|
p@20
|
95 the application to focus upon when making this choice. Indeed, recommendation
|
p@20
|
96 systems have a variety of properties that may affect user experience, such as
|
p@20
|
97 accuracy, robustness, scalability, and so forth. In this paper we discuss how to
|
p@20
|
98 compare recommenders based on a set of properties that are relevant for e
|
p@20
|
99 application. We focus on comparative studies, where a few algorithms are compared
|
p@20
|
100 using some evaluation metric, rather than absolute benchmarking of algorithms. We
|
p@20
|
101 describe experimental settings appropriate for making choices between algorithms.
|
p@20
|
102 We review three types of experiments, starting with an offline setting, where
|
p@20
|
103 recommendation approaches are compared without user interaction, then reviewing
|
p@20
|
104 user studies, where a small group of subjects experiment with the system and
|
p@20
|
105 report on the experience, and finally describe large scale online experiments,
|
p@20
|
106 where real user populations interact with the system. In each of these cases we
|
p@20
|
107 describe types of questions that can be answered, and suggest protocols for
|
p@20
|
108 experimentation. We also discuss how to draw trustworthy conclusions from e
|
p@20
|
109 conducted experiments. We then review a large set of properties, and explain how
|
p@20
|
110 to evaluate systems given relevant properties. We also survey a large set of
|
p@20
|
111 evaluation metrics in the context of the property that they evaluate.</p>},
|
p@20
|
112 author = {Guy Shani and Asela Gunawardana},
|
p@20
|
113 month = {November},
|
p@20
|
114 number = {MSR-TR-2009-159},
|
p@20
|
115 publisher = {Microsoft Research},
|
p@20
|
116 title = {Evaluating Recommender Systems},
|
p@20
|
117 url = {http://research.microsoft.com/apps/pubs/default.aspx?id=115396},
|
p@20
|
118 year = {2009},
|
p@20
|
119 }
|
p@20
|
120
|
p@20
|
121 @phdthesis {1242,
|
p@20
|
122 title = {Music Recommendation and Discovery in the Long Tail},
|
p@20
|
123 year = {2008},
|
p@20
|
124 school = {Universitat Pompeu Fabra},
|
p@20
|
125 address = {Barcelona},
|
p@20
|
126 abstract = {<p class="small">
|
p@20
|
127 Music consumption is biased towards a few popular artists. For instance, in 2007 only 1\% of
|
p@20
|
128 all digital tracks accounted for 80\% of all sales. Similarly, 1,000 albums accounted for 50\%
|
p@20
|
129 of all album sales, and 80\% of all albums sold were purchased less than 100 times. There is
|
p@20
|
130 a need to assist people to filter, discover, personalise and recommend from the huge amount
|
p@20
|
131 of music content available along the Long Tail.
|
p@20
|
132 </p>
|
p@20
|
133 <p class="small">
|
p@20
|
134 Current music recommendation algorithms try to
|
p@20
|
135 accurately predict what people demand to listen to. However, quite
|
p@20
|
136 often these algorithms tend to recommend popular -or well-known to the
|
p@20
|
137 user- music, decreasing the effectiveness of the recommendations. These
|
p@20
|
138 approaches focus on improving the accuracy of the recommendations. That
|
p@20
|
139 is, try to make
|
p@20
|
140 accurate predictions about what a user could listen to, or buy next,
|
p@20
|
141 independently of how
|
p@20
|
142 useful to the user could be the provided recommendations.
|
p@20
|
143 </p>
|
p@20
|
144 <p class="small">
|
p@20
|
145 In this Thesis we stress the importance of the user{\textquoteright}s
|
p@20
|
146 perceived quality of the recommendations. We model the Long Tail curve
|
p@20
|
147 of artist popularity to predict -potentially-
|
p@20
|
148 interesting and unknown music, hidden in the tail of the popularity
|
p@20
|
149 curve. Effective recommendation systems should promote novel and
|
p@20
|
150 relevant material (non-obvious recommendations), taken primarily from
|
p@20
|
151 the tail of a popularity distribution.
|
p@20
|
152 </p>
|
p@20
|
153 <p class="small">
|
p@20
|
154 The main contributions of this Thesis are: <em>(i)</em> a novel network-based approach for
|
p@20
|
155 recommender systems, based on the analysis of the item (or user) similarity graph, and the
|
p@20
|
156 popularity of the items, <em>(ii)</em> a user-centric evaluation that measures the user{\textquoteright}s relevance
|
p@20
|
157 and novelty of the recommendations, and <em>(iii)</em> two prototype systems that implement the
|
p@20
|
158 ideas derived from the theoretical work. Our findings have significant implications for
|
p@20
|
159 recommender systems that assist users to explore the Long Tail, digging for content they
|
p@20
|
160 might like.
|
p@20
|
161 </p>
|
p@20
|
162 },
|
p@20
|
163 url = {http://mtg.upf.edu/static/media/PhD\_ocelma.pdf},
|
p@20
|
164 author = {Celma, \{`O}.},
|
p@20
|
165 }
|
p@21
|
166
|
p@21
|
167 @inproceedings{pachet2001musical,
|
p@21
|
168 title={Musical data mining for electronic music distribution},
|
p@21
|
169 author={Pachet, Fran{\c{c}}ois and Westermann, Gert and Laigre, Damien},
|
p@21
|
170 booktitle={Web Delivering of Music, 2001. Proceedings. First International Conference on},
|
p@21
|
171 pages={101--106},
|
p@21
|
172 year={2001},
|
p@21
|
173 organization={IEEE}
|
p@21
|
174 }
|
p@21
|
175
|
p@21
|
176 @ARTICLE{Tzanetakis2002293,
|
p@21
|
177 author={Tzanetakis, G. and Cook, P.},
|
p@21
|
178 title={Musical genre classification of audio signals},
|
p@21
|
179 journal={IEEE Transactions on Speech and Audio Processing},
|
p@21
|
180 year={2002},
|
p@21
|
181 volume={10},
|
p@21
|
182 number={5},
|
p@21
|
183 pages={293-302},
|
p@21
|
184 doi={10.1109/TSA.2002.800560},
|
p@21
|
185 note={cited By 976},
|
p@21
|
186 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-0036648502\&partnerID=40\&md5=72d2fee186b42c9998f13415cbb79eea},
|
p@21
|
187 document_type={Article},
|
p@21
|
188 source={Scopus},
|
p@21
|
189 }
|
p@21
|
190
|
p@21
|
191 @CONFERENCE{Sturm20127,
|
p@21
|
192 author={Sturm, B.L.},
|
p@21
|
193 title={An analysis of the GTZAN music genre dataset},
|
p@21
|
194 journal={MIRUM 2012 - Proceedings of the 2nd International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies, Co-located with ACM Multimedia 2012},
|
p@21
|
195 year={2012},
|
p@21
|
196 pages={7-12},
|
p@21
|
197 doi={10.1145/2390848.2390851},
|
p@21
|
198 note={cited By 0},
|
p@21
|
199 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84870497334\&partnerID=40\&md5=40a48c1c9d787308dd315694b54b64ec},
|
p@21
|
200 document_type={Conference Paper},
|
p@21
|
201 source={Scopus},
|
p@21
|
202 }
|
p@21
|
203
|
p@21
|
204 @unpublished{Bengio-et-al-2015-Book,
|
p@21
|
205 title={Deep Learning},
|
p@21
|
206 author={Yoshua Bengio and Ian J. Goodfellow and Aaron Courville},
|
p@21
|
207 note={Book in preparation for MIT Press},
|
p@21
|
208 url={http://www.iro.umontreal.ca/~bengioy/dlbook},
|
p@21
|
209 year={2015}
|
p@21
|
210 }
|
p@21
|
211
|
p@21
|
212 @CONFERENCE{Sigtia20146959,
|
p@21
|
213 author={Sigtia, S. and Dixon, S.},
|
p@21
|
214 title={Improved music feature learning with deep neural networks},
|
p@21
|
215 journal={ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings},
|
p@21
|
216 year={2014},
|
p@21
|
217 pages={6959-6963},
|
p@21
|
218 doi={10.1109/ICASSP.2014.6854949},
|
p@21
|
219 art_number={6854949},
|
p@21
|
220 note={cited By 0},
|
p@21
|
221 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84905259152\&partnerID=40\&md5=3441dfa8c7998a8eb39f668d43efb8a1},
|
p@21
|
222 document_type={Conference Paper},
|
p@21
|
223 source={Scopus},
|
p@21
|
224 }
|
p@21
|
225
|
p@21
|
226 @incollection{NIPS2013_5004,
|
p@21
|
227 title = {Deep content-based music recommendation},
|
p@21
|
228 author = {van den Oord, Aaron and Dieleman, Sander and Schrauwen, Benjamin},
|
p@21
|
229 booktitle = {Advances in Neural Information Processing Systems 26},
|
p@21
|
230 editor = {C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger},
|
p@21
|
231 pages = {2643--2651},
|
p@21
|
232 year = {2013},
|
p@21
|
233 publisher = {Curran Associates, Inc.},
|
p@21
|
234 url = {http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf}
|
p@21
|
235 }
|
p@21
|
236
|
p@21
|
237 @incollection{pelikan2015estimation,
|
p@21
|
238 title={Estimation of Distribution Algorithms},
|
p@21
|
239 author={Pelikan, Martin and Hauschild, Mark W and Lobo, Fernando G},
|
p@21
|
240 booktitle={Springer Handbook of Computational Intelligence},
|
p@21
|
241 pages={899--928},
|
p@21
|
242 year={2015},
|
p@21
|
243 publisher={Springer}
|
p@21
|
244 }
|
p@21
|
245
|
p@21
|
246 @article{Santana:Bielza:Larrañaga:Lozano:Echegoyen:Mendiburu:Armañanzas:Shakya:2009:JSSOBK:v35i07,
|
p@21
|
247 author = "Roberto Santana and Concha Bielza and Pedro Larrañaga and Jose A. Lozano and Carlos Echegoyen and Alexander Mendiburu and Rubén Armañanzas and Siddartha Shakya",
|
p@21
|
248 title = "Mateda-2.0: A MATLAB Package for the Implementation and Analysis of Estimation of Distribution Algorithms",
|
p@21
|
249 journal = "Journal of Statistical Software",
|
p@21
|
250 volume = "35",
|
p@21
|
251 number = "7",
|
p@21
|
252 pages = "1--30",
|
p@21
|
253 day = "26",
|
p@21
|
254 month = "7",
|
p@21
|
255 year = "2010",
|
p@21
|
256 CODEN = "JSSOBK",
|
p@21
|
257 ISSN = "1548-7660",
|
p@21
|
258 bibdate = "2009-12-17",
|
p@21
|
259 URL = "http://www.jstatsoft.org/v35/i07",
|
p@21
|
260 accepted = "2009-12-17",
|
p@21
|
261 acknowledgement = "",
|
p@21
|
262 keywords = "",
|
p@21
|
263 submitted = "2009-04-15",
|
p@21
|
264 }
|
p@21
|
265
|
p@21
|
266 @ARTICLE{Liang2014781,
|
p@21
|
267 author={Liang, T. and Liang, Y. and Fan, J. and Zhao, J.},
|
p@21
|
268 title={A hybrid recommendation model based on estimation of distribution algorithms},
|
p@21
|
269 journal={Journal of Computational Information Systems},
|
p@21
|
270 year={2014},
|
p@21
|
271 volume={10},
|
p@21
|
272 number={2},
|
p@21
|
273 pages={781-788},
|
p@21
|
274 doi={10.12733/jcis9623},
|
p@21
|
275 note={cited By 0},
|
p@21
|
276 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84892865461\&partnerID=40\&md5=a2927d36b493e8ef4d1cdab3055fa68b},
|
p@21
|
277 document_type={Article},
|
p@21
|
278 source={Scopus},
|
p@21
|
279 }
|
p@21
|
280
|
p@21
|
281 @INPROCEEDINGS{Bertin-Mahieux2011,
|
p@21
|
282 author = {Thierry Bertin-Mahieux and Daniel P.W. Ellis and Brian Whitman and Paul Lamere},
|
p@21
|
283 title = {The Million Song Dataset},
|
p@21
|
284 booktitle = {{Proceedings of the 12th International Conference on Music Information
|
p@21
|
285 Retrieval ({ISMIR} 2011)}},
|
p@21
|
286 year = {2011},
|
p@21
|
287 owner = {thierry},
|
p@21
|
288 timestamp = {2010.03.07}
|
p@21
|
289 }
|
p@21
|
290
|
p@21
|
291 @inproceedings{zhang2014deep,
|
p@21
|
292 title={A deep representation for invariance and music classification},
|
p@21
|
293 author={Zhang, Chiyuan and Evangelopoulos, Georgios and Voinea, Stephen and Rosasco, Lorenzo and Poggio, Tomaso},
|
p@21
|
294 booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on},
|
p@21
|
295 pages={6984--6988},
|
p@21
|
296 year={2014},
|
p@21
|
297 organization={IEEE}
|
p@21
|
298 } |