annotate src/ConstantQ.cpp @ 150:242bf7bc38ce

Avoid failing if min and max frequency are identical
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 10 Jul 2014 15:27:19 +0100
parents 1060a19e2334
children b34df30fd7e4
rev   line source
c@116 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@116 2 /*
c@116 3 Constant-Q library
c@116 4 Copyright (c) 2013-2014 Queen Mary, University of London
c@116 5
c@116 6 Permission is hereby granted, free of charge, to any person
c@116 7 obtaining a copy of this software and associated documentation
c@116 8 files (the "Software"), to deal in the Software without
c@116 9 restriction, including without limitation the rights to use, copy,
c@116 10 modify, merge, publish, distribute, sublicense, and/or sell copies
c@116 11 of the Software, and to permit persons to whom the Software is
c@116 12 furnished to do so, subject to the following conditions:
c@116 13
c@116 14 The above copyright notice and this permission notice shall be
c@116 15 included in all copies or substantial portions of the Software.
c@116 16
c@116 17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
c@116 18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
c@116 19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
c@116 20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
c@116 21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
c@116 22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
c@116 23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
c@116 24
c@116 25 Except as contained in this notice, the names of the Centre for
c@116 26 Digital Music; Queen Mary, University of London; and Chris Cannam
c@116 27 shall not be used in advertising or otherwise to promote the sale,
c@116 28 use or other dealings in this Software without prior written
c@116 29 authorization.
c@116 30 */
c@116 31
c@116 32 #include "ConstantQ.h"
c@116 33
c@116 34 #include "CQKernel.h"
c@116 35
c@121 36 #include "dsp/Resampler.h"
c@121 37 #include "dsp/MathUtilities.h"
c@121 38 #include "dsp/FFT.h"
c@116 39
c@116 40 #include <algorithm>
c@116 41 #include <iostream>
c@116 42 #include <stdexcept>
c@116 43
c@116 44 using std::vector;
c@116 45 using std::cerr;
c@116 46 using std::endl;
c@116 47
c@116 48 //#define DEBUG_CQ 1
c@116 49
c@127 50 ConstantQ::ConstantQ(CQParameters params) :
c@127 51 m_inparams(params),
c@127 52 m_sampleRate(params.sampleRate),
c@127 53 m_maxFrequency(params.maxFrequency),
c@127 54 m_minFrequency(params.minFrequency),
c@127 55 m_binsPerOctave(params.binsPerOctave),
c@116 56 m_fft(0)
c@116 57 {
c@127 58 if (m_minFrequency <= 0.0 || m_maxFrequency <= 0.0) {
c@116 59 throw std::invalid_argument("Frequency extents must be positive");
c@116 60 }
c@116 61
c@116 62 initialise();
c@116 63 }
c@116 64
c@116 65 ConstantQ::~ConstantQ()
c@116 66 {
c@116 67 delete m_fft;
c@116 68 for (int i = 0; i < (int)m_decimators.size(); ++i) {
c@116 69 delete m_decimators[i];
c@116 70 }
c@116 71 delete m_kernel;
c@116 72 }
c@116 73
c@116 74 double
c@116 75 ConstantQ::getMinFrequency() const
c@116 76 {
c@116 77 return m_p.minFrequency / pow(2.0, m_octaves - 1);
c@116 78 }
c@116 79
c@116 80 double
c@145 81 ConstantQ::getBinFrequency(double bin) const
c@116 82 {
c@137 83 // our bins are returned in high->low order
c@137 84 bin = (getBinsPerOctave() * getOctaves()) - bin - 1;
c@145 85 return getMinFrequency() * pow(2, (bin / getBinsPerOctave()));
c@116 86 }
c@116 87
c@116 88 void
c@116 89 ConstantQ::initialise()
c@116 90 {
c@116 91 m_octaves = int(ceil(log2(m_maxFrequency / m_minFrequency)));
c@150 92
c@150 93 if (m_octaves < 1) {
c@150 94 m_kernel = 0; // incidentally causing isValid() to return false
c@150 95 return;
c@150 96 }
c@150 97
c@127 98 m_kernel = new CQKernel(m_inparams);
c@116 99 m_p = m_kernel->getProperties();
c@116 100
c@147 101 if (!m_kernel->isValid()) {
c@147 102 return;
c@147 103 }
c@147 104
c@116 105 // Use exact powers of two for resampling rates. They don't have
c@116 106 // to be related to our actual samplerate: the resampler only
c@116 107 // cares about the ratio, but it only accepts integer source and
c@116 108 // target rates, and if we start from the actual samplerate we
c@116 109 // risk getting non-integer rates for lower octaves
c@116 110
c@116 111 int sourceRate = pow(2, m_octaves);
c@116 112 vector<int> latencies;
c@116 113
c@116 114 // top octave, no resampling
c@116 115 latencies.push_back(0);
c@116 116 m_decimators.push_back(0);
c@116 117
c@116 118 for (int i = 1; i < m_octaves; ++i) {
c@116 119
c@116 120 int factor = pow(2, i);
c@116 121
c@116 122 Resampler *r = new Resampler
c@116 123 (sourceRate, sourceRate / factor, 50, 0.05);
c@116 124
c@116 125 #ifdef DEBUG_CQ
c@116 126 cerr << "forward: octave " << i << ": resample from " << sourceRate << " to " << sourceRate / factor << endl;
c@116 127 #endif
c@116 128
c@116 129 // We need to adapt the latencies so as to get the first input
c@116 130 // sample to be aligned, in time, at the decimator output
c@116 131 // across all octaves.
c@116 132 //
c@116 133 // Our decimator uses a linear phase filter, but being causal
c@116 134 // it is not zero phase: it has a latency that depends on the
c@116 135 // decimation factor. Those latencies have been calculated
c@116 136 // per-octave and are available to us in the latencies
c@116 137 // array. Left to its own devices, the first input sample will
c@116 138 // appear at output sample 0 in the highest octave (where no
c@116 139 // decimation is needed), sample number latencies[1] in the
c@116 140 // next octave down, latencies[2] in the next one, etc. We get
c@116 141 // to apply some artificial per-octave latency after the
c@116 142 // decimator in the processing chain, in order to compensate
c@116 143 // for the differing latencies associated with different
c@116 144 // decimation factors. How much should we insert?
c@116 145 //
c@116 146 // The outputs of the decimators are at different rates (in
c@116 147 // terms of the relation between clock time and samples) and
c@116 148 // we want them aligned in terms of time. So, for example, a
c@116 149 // latency of 10 samples with a decimation factor of 2 is
c@116 150 // equivalent to a latency of 20 with no decimation -- they
c@116 151 // both result in the first output sample happening at the
c@116 152 // same equivalent time in milliseconds.
c@116 153 //
c@116 154 // So here we record the latency added by the decimator, in
c@116 155 // terms of the sample rate of the undecimated signal. Then we
c@116 156 // use that to compensate in a moment, when we've discovered
c@116 157 // what the longest latency across all octaves is.
c@116 158
c@116 159 latencies.push_back(r->getLatency() * factor);
c@116 160 m_decimators.push_back(r);
c@116 161 }
c@116 162
c@116 163 m_bigBlockSize = m_p.fftSize * pow(2, m_octaves - 1);
c@116 164
c@116 165 // Now add in the extra padding and compensate for hops that must
c@116 166 // be dropped in order to align the atom centres across
c@116 167 // octaves. Again this is a bit trickier because we are doing it
c@116 168 // at input rather than output and so must work in per-octave
c@116 169 // sample rates rather than output blocks
c@116 170
c@116 171 int emptyHops = m_p.firstCentre / m_p.atomSpacing;
c@116 172
c@116 173 vector<int> drops;
c@116 174 for (int i = 0; i < m_octaves; ++i) {
c@116 175 int factor = pow(2, i);
c@116 176 int dropHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops;
c@116 177 int drop = ((dropHops * m_p.fftHop) * factor) / m_p.atomsPerFrame;
c@116 178 drops.push_back(drop);
c@116 179 }
c@116 180
c@116 181 int maxLatPlusDrop = 0;
c@116 182 for (int i = 0; i < m_octaves; ++i) {
c@116 183 int latPlusDrop = latencies[i] + drops[i];
c@116 184 if (latPlusDrop > maxLatPlusDrop) maxLatPlusDrop = latPlusDrop;
c@116 185 }
c@116 186
c@116 187 int totalLatency = maxLatPlusDrop;
c@116 188
c@116 189 int lat0 = totalLatency - latencies[0] - drops[0];
c@116 190 totalLatency = ceil(double(lat0 / m_p.fftHop) * m_p.fftHop)
c@116 191 + latencies[0] + drops[0];
c@116 192
c@116 193 // We want (totalLatency - latencies[i]) to be a multiple of 2^i
c@116 194 // for each octave i, so that we do not end up with fractional
c@116 195 // octave latencies below. In theory this is hard, in practice if
c@116 196 // we ensure it for the last octave we should be OK.
c@116 197 double finalOctLat = latencies[m_octaves-1];
c@116 198 double finalOctFact = pow(2, m_octaves-1);
c@116 199 totalLatency =
c@116 200 int(round(finalOctLat +
c@116 201 finalOctFact *
c@116 202 ceil((totalLatency - finalOctLat) / finalOctFact)));
c@116 203
c@116 204 #ifdef DEBUG_CQ
c@116 205 cerr << "total latency = " << totalLatency << endl;
c@116 206 #endif
c@116 207
c@116 208 // Padding as in the reference (will be introduced with the
c@116 209 // latency compensation in the loop below)
c@116 210 m_outputLatency = totalLatency + m_bigBlockSize
c@116 211 - m_p.firstCentre * pow(2, m_octaves-1);
c@116 212
c@116 213 #ifdef DEBUG_CQ
c@116 214 cerr << "m_bigBlockSize = " << m_bigBlockSize << ", firstCentre = "
c@116 215 << m_p.firstCentre << ", m_octaves = " << m_octaves
c@116 216 << ", so m_outputLatency = " << m_outputLatency << endl;
c@116 217 #endif
c@116 218
c@116 219 for (int i = 0; i < m_octaves; ++i) {
c@116 220
c@116 221 double factor = pow(2, i);
c@116 222
c@116 223 // Calculate the difference between the total latency applied
c@116 224 // across all octaves, and the existing latency due to the
c@116 225 // decimator for this octave, and then convert it back into
c@116 226 // the sample rate appropriate for the output latency of this
c@116 227 // decimator -- including one additional big block of padding
c@116 228 // (as in the reference).
c@116 229
c@116 230 double octaveLatency =
c@116 231 double(totalLatency - latencies[i] - drops[i]
c@116 232 + m_bigBlockSize) / factor;
c@116 233
c@116 234 #ifdef DEBUG_CQ
c@116 235 cerr << "octave " << i << ": resampler latency = " << latencies[i]
c@116 236 << ", drop " << drops[i] << " (/factor = " << drops[i]/factor
c@116 237 << "), octaveLatency = " << octaveLatency << " -> "
c@116 238 << int(round(octaveLatency)) << " (diff * factor = "
c@116 239 << (octaveLatency - round(octaveLatency)) << " * "
c@116 240 << factor << " = "
c@116 241 << (octaveLatency - round(octaveLatency)) * factor << ")" << endl;
c@116 242
c@116 243 cerr << "double(" << totalLatency << " - "
c@116 244 << latencies[i] << " - " << drops[i] << " + "
c@116 245 << m_bigBlockSize << ") / " << factor << " = "
c@116 246 << octaveLatency << endl;
c@116 247 #endif
c@116 248
c@116 249 m_buffers.push_back
c@116 250 (RealSequence(int(round(octaveLatency)), 0.0));
c@116 251 }
c@116 252
c@116 253 m_fft = new FFTReal(m_p.fftSize);
c@116 254 }
c@116 255
c@116 256 ConstantQ::ComplexBlock
c@116 257 ConstantQ::process(const RealSequence &td)
c@116 258 {
c@116 259 m_buffers[0].insert(m_buffers[0].end(), td.begin(), td.end());
c@116 260
c@116 261 for (int i = 1; i < m_octaves; ++i) {
c@116 262 RealSequence dec = m_decimators[i]->process(td.data(), td.size());
c@116 263 m_buffers[i].insert(m_buffers[i].end(), dec.begin(), dec.end());
c@116 264 }
c@116 265
c@116 266 ComplexBlock out;
c@116 267
c@116 268 while (true) {
c@116 269
c@116 270 // We could have quite different remaining sample counts in
c@116 271 // different octaves, because (apart from the predictable
c@116 272 // added counts for decimator output on each block) we also
c@116 273 // have variable additional latency per octave
c@116 274 bool enough = true;
c@116 275 for (int i = 0; i < m_octaves; ++i) {
c@116 276 int required = m_p.fftSize * pow(2, m_octaves - i - 1);
c@116 277 if ((int)m_buffers[i].size() < required) {
c@116 278 enough = false;
c@116 279 }
c@116 280 }
c@116 281 if (!enough) break;
c@116 282
c@116 283 int base = out.size();
c@116 284 int totalColumns = pow(2, m_octaves - 1) * m_p.atomsPerFrame;
c@116 285 for (int i = 0; i < totalColumns; ++i) {
c@116 286 out.push_back(ComplexColumn());
c@116 287 }
c@116 288
c@116 289 for (int octave = 0; octave < m_octaves; ++octave) {
c@116 290
c@116 291 int blocksThisOctave = pow(2, (m_octaves - octave - 1));
c@116 292
c@116 293 for (int b = 0; b < blocksThisOctave; ++b) {
c@116 294 ComplexBlock block = processOctaveBlock(octave);
c@116 295
c@116 296 for (int j = 0; j < m_p.atomsPerFrame; ++j) {
c@116 297
c@116 298 int target = base +
c@116 299 (b * (totalColumns / blocksThisOctave) +
c@116 300 (j * ((totalColumns / blocksThisOctave) /
c@116 301 m_p.atomsPerFrame)));
c@116 302
c@116 303 while (int(out[target].size()) <
c@116 304 m_p.binsPerOctave * (octave + 1)) {
c@116 305 out[target].push_back(Complex());
c@116 306 }
c@116 307
c@116 308 for (int i = 0; i < m_p.binsPerOctave; ++i) {
c@116 309 out[target][m_p.binsPerOctave * octave + i] =
c@116 310 block[j][m_p.binsPerOctave - i - 1];
c@116 311 }
c@116 312 }
c@116 313 }
c@116 314 }
c@116 315 }
c@116 316
c@116 317 return out;
c@116 318 }
c@116 319
c@116 320 ConstantQ::ComplexBlock
c@116 321 ConstantQ::getRemainingOutput()
c@116 322 {
c@116 323 // Same as padding added at start, though rounded up
c@116 324 int pad = ceil(double(m_outputLatency) / m_bigBlockSize) * m_bigBlockSize;
c@116 325 RealSequence zeros(pad, 0.0);
c@116 326 return process(zeros);
c@116 327 }
c@116 328
c@116 329 ConstantQ::ComplexBlock
c@116 330 ConstantQ::processOctaveBlock(int octave)
c@116 331 {
c@116 332 RealSequence ro(m_p.fftSize, 0.0);
c@116 333 RealSequence io(m_p.fftSize, 0.0);
c@116 334
c@116 335 m_fft->forward(m_buffers[octave].data(), ro.data(), io.data());
c@116 336
c@116 337 RealSequence shifted;
c@116 338 shifted.insert(shifted.end(),
c@116 339 m_buffers[octave].begin() + m_p.fftHop,
c@116 340 m_buffers[octave].end());
c@116 341 m_buffers[octave] = shifted;
c@116 342
c@116 343 ComplexSequence cv;
c@116 344 for (int i = 0; i < m_p.fftSize; ++i) {
c@116 345 cv.push_back(Complex(ro[i], io[i]));
c@116 346 }
c@116 347
c@116 348 ComplexSequence cqrowvec = m_kernel->processForward(cv);
c@116 349
c@116 350 // Reform into a column matrix
c@116 351 ComplexBlock cqblock;
c@116 352 for (int j = 0; j < m_p.atomsPerFrame; ++j) {
c@116 353 cqblock.push_back(ComplexColumn());
c@116 354 for (int i = 0; i < m_p.binsPerOctave; ++i) {
c@116 355 cqblock[j].push_back(cqrowvec[i * m_p.atomsPerFrame + j]);
c@116 356 }
c@116 357 }
c@116 358
c@116 359 return cqblock;
c@116 360 }
c@116 361
c@116 362