annotate src/ConstantQ.cpp @ 121:2375457f2876

More necessary code, some work on build scripts
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 15 May 2014 14:23:42 +0100
parents 6deec2a51d13
children 8996465e39fc
rev   line source
c@116 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@116 2 /*
c@116 3 Constant-Q library
c@116 4 Copyright (c) 2013-2014 Queen Mary, University of London
c@116 5
c@116 6 Permission is hereby granted, free of charge, to any person
c@116 7 obtaining a copy of this software and associated documentation
c@116 8 files (the "Software"), to deal in the Software without
c@116 9 restriction, including without limitation the rights to use, copy,
c@116 10 modify, merge, publish, distribute, sublicense, and/or sell copies
c@116 11 of the Software, and to permit persons to whom the Software is
c@116 12 furnished to do so, subject to the following conditions:
c@116 13
c@116 14 The above copyright notice and this permission notice shall be
c@116 15 included in all copies or substantial portions of the Software.
c@116 16
c@116 17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
c@116 18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
c@116 19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
c@116 20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
c@116 21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
c@116 22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
c@116 23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
c@116 24
c@116 25 Except as contained in this notice, the names of the Centre for
c@116 26 Digital Music; Queen Mary, University of London; and Chris Cannam
c@116 27 shall not be used in advertising or otherwise to promote the sale,
c@116 28 use or other dealings in this Software without prior written
c@116 29 authorization.
c@116 30 */
c@116 31
c@116 32 #include "ConstantQ.h"
c@116 33
c@116 34 #include "CQKernel.h"
c@116 35
c@121 36 #include "dsp/Resampler.h"
c@121 37 #include "dsp/MathUtilities.h"
c@121 38 #include "dsp/FFT.h"
c@116 39
c@116 40 #include <algorithm>
c@116 41 #include <iostream>
c@116 42 #include <stdexcept>
c@116 43
c@116 44 using std::vector;
c@116 45 using std::cerr;
c@116 46 using std::endl;
c@116 47
c@116 48 //#define DEBUG_CQ 1
c@116 49
c@116 50 ConstantQ::ConstantQ(double sampleRate,
c@116 51 double minFreq,
c@116 52 double maxFreq,
c@116 53 int binsPerOctave) :
c@116 54 m_sampleRate(sampleRate),
c@116 55 m_maxFrequency(maxFreq),
c@116 56 m_minFrequency(minFreq),
c@116 57 m_binsPerOctave(binsPerOctave),
c@116 58 m_fft(0)
c@116 59 {
c@116 60 if (minFreq <= 0.0 || maxFreq <= 0.0) {
c@116 61 throw std::invalid_argument("Frequency extents must be positive");
c@116 62 }
c@116 63
c@116 64 initialise();
c@116 65 }
c@116 66
c@116 67 ConstantQ::~ConstantQ()
c@116 68 {
c@116 69 delete m_fft;
c@116 70 for (int i = 0; i < (int)m_decimators.size(); ++i) {
c@116 71 delete m_decimators[i];
c@116 72 }
c@116 73 delete m_kernel;
c@116 74 }
c@116 75
c@116 76 double
c@116 77 ConstantQ::getMinFrequency() const
c@116 78 {
c@116 79 return m_p.minFrequency / pow(2.0, m_octaves - 1);
c@116 80 }
c@116 81
c@116 82 double
c@116 83 ConstantQ::getBinFrequency(int bin) const
c@116 84 {
c@116 85 return getMinFrequency() * pow(2, (double(bin) / getBinsPerOctave()));
c@116 86 }
c@116 87
c@116 88 void
c@116 89 ConstantQ::initialise()
c@116 90 {
c@116 91 m_octaves = int(ceil(log2(m_maxFrequency / m_minFrequency)));
c@116 92 m_kernel = new CQKernel(m_sampleRate, m_maxFrequency, m_binsPerOctave);
c@116 93 m_p = m_kernel->getProperties();
c@116 94
c@116 95 // Use exact powers of two for resampling rates. They don't have
c@116 96 // to be related to our actual samplerate: the resampler only
c@116 97 // cares about the ratio, but it only accepts integer source and
c@116 98 // target rates, and if we start from the actual samplerate we
c@116 99 // risk getting non-integer rates for lower octaves
c@116 100
c@116 101 int sourceRate = pow(2, m_octaves);
c@116 102 vector<int> latencies;
c@116 103
c@116 104 // top octave, no resampling
c@116 105 latencies.push_back(0);
c@116 106 m_decimators.push_back(0);
c@116 107
c@116 108 for (int i = 1; i < m_octaves; ++i) {
c@116 109
c@116 110 int factor = pow(2, i);
c@116 111
c@116 112 Resampler *r = new Resampler
c@116 113 (sourceRate, sourceRate / factor, 50, 0.05);
c@116 114
c@116 115 #ifdef DEBUG_CQ
c@116 116 cerr << "forward: octave " << i << ": resample from " << sourceRate << " to " << sourceRate / factor << endl;
c@116 117 #endif
c@116 118
c@116 119 // We need to adapt the latencies so as to get the first input
c@116 120 // sample to be aligned, in time, at the decimator output
c@116 121 // across all octaves.
c@116 122 //
c@116 123 // Our decimator uses a linear phase filter, but being causal
c@116 124 // it is not zero phase: it has a latency that depends on the
c@116 125 // decimation factor. Those latencies have been calculated
c@116 126 // per-octave and are available to us in the latencies
c@116 127 // array. Left to its own devices, the first input sample will
c@116 128 // appear at output sample 0 in the highest octave (where no
c@116 129 // decimation is needed), sample number latencies[1] in the
c@116 130 // next octave down, latencies[2] in the next one, etc. We get
c@116 131 // to apply some artificial per-octave latency after the
c@116 132 // decimator in the processing chain, in order to compensate
c@116 133 // for the differing latencies associated with different
c@116 134 // decimation factors. How much should we insert?
c@116 135 //
c@116 136 // The outputs of the decimators are at different rates (in
c@116 137 // terms of the relation between clock time and samples) and
c@116 138 // we want them aligned in terms of time. So, for example, a
c@116 139 // latency of 10 samples with a decimation factor of 2 is
c@116 140 // equivalent to a latency of 20 with no decimation -- they
c@116 141 // both result in the first output sample happening at the
c@116 142 // same equivalent time in milliseconds.
c@116 143 //
c@116 144 // So here we record the latency added by the decimator, in
c@116 145 // terms of the sample rate of the undecimated signal. Then we
c@116 146 // use that to compensate in a moment, when we've discovered
c@116 147 // what the longest latency across all octaves is.
c@116 148
c@116 149 latencies.push_back(r->getLatency() * factor);
c@116 150 m_decimators.push_back(r);
c@116 151 }
c@116 152
c@116 153 m_bigBlockSize = m_p.fftSize * pow(2, m_octaves - 1);
c@116 154
c@116 155 // Now add in the extra padding and compensate for hops that must
c@116 156 // be dropped in order to align the atom centres across
c@116 157 // octaves. Again this is a bit trickier because we are doing it
c@116 158 // at input rather than output and so must work in per-octave
c@116 159 // sample rates rather than output blocks
c@116 160
c@116 161 int emptyHops = m_p.firstCentre / m_p.atomSpacing;
c@116 162
c@116 163 vector<int> drops;
c@116 164 for (int i = 0; i < m_octaves; ++i) {
c@116 165 int factor = pow(2, i);
c@116 166 int dropHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops;
c@116 167 int drop = ((dropHops * m_p.fftHop) * factor) / m_p.atomsPerFrame;
c@116 168 drops.push_back(drop);
c@116 169 }
c@116 170
c@116 171 int maxLatPlusDrop = 0;
c@116 172 for (int i = 0; i < m_octaves; ++i) {
c@116 173 int latPlusDrop = latencies[i] + drops[i];
c@116 174 if (latPlusDrop > maxLatPlusDrop) maxLatPlusDrop = latPlusDrop;
c@116 175 }
c@116 176
c@116 177 int totalLatency = maxLatPlusDrop;
c@116 178
c@116 179 int lat0 = totalLatency - latencies[0] - drops[0];
c@116 180 totalLatency = ceil(double(lat0 / m_p.fftHop) * m_p.fftHop)
c@116 181 + latencies[0] + drops[0];
c@116 182
c@116 183 // We want (totalLatency - latencies[i]) to be a multiple of 2^i
c@116 184 // for each octave i, so that we do not end up with fractional
c@116 185 // octave latencies below. In theory this is hard, in practice if
c@116 186 // we ensure it for the last octave we should be OK.
c@116 187 double finalOctLat = latencies[m_octaves-1];
c@116 188 double finalOctFact = pow(2, m_octaves-1);
c@116 189 totalLatency =
c@116 190 int(round(finalOctLat +
c@116 191 finalOctFact *
c@116 192 ceil((totalLatency - finalOctLat) / finalOctFact)));
c@116 193
c@116 194 #ifdef DEBUG_CQ
c@116 195 cerr << "total latency = " << totalLatency << endl;
c@116 196 #endif
c@116 197
c@116 198 // Padding as in the reference (will be introduced with the
c@116 199 // latency compensation in the loop below)
c@116 200 m_outputLatency = totalLatency + m_bigBlockSize
c@116 201 - m_p.firstCentre * pow(2, m_octaves-1);
c@116 202
c@116 203 #ifdef DEBUG_CQ
c@116 204 cerr << "m_bigBlockSize = " << m_bigBlockSize << ", firstCentre = "
c@116 205 << m_p.firstCentre << ", m_octaves = " << m_octaves
c@116 206 << ", so m_outputLatency = " << m_outputLatency << endl;
c@116 207 #endif
c@116 208
c@116 209 for (int i = 0; i < m_octaves; ++i) {
c@116 210
c@116 211 double factor = pow(2, i);
c@116 212
c@116 213 // Calculate the difference between the total latency applied
c@116 214 // across all octaves, and the existing latency due to the
c@116 215 // decimator for this octave, and then convert it back into
c@116 216 // the sample rate appropriate for the output latency of this
c@116 217 // decimator -- including one additional big block of padding
c@116 218 // (as in the reference).
c@116 219
c@116 220 double octaveLatency =
c@116 221 double(totalLatency - latencies[i] - drops[i]
c@116 222 + m_bigBlockSize) / factor;
c@116 223
c@116 224 #ifdef DEBUG_CQ
c@116 225 cerr << "octave " << i << ": resampler latency = " << latencies[i]
c@116 226 << ", drop " << drops[i] << " (/factor = " << drops[i]/factor
c@116 227 << "), octaveLatency = " << octaveLatency << " -> "
c@116 228 << int(round(octaveLatency)) << " (diff * factor = "
c@116 229 << (octaveLatency - round(octaveLatency)) << " * "
c@116 230 << factor << " = "
c@116 231 << (octaveLatency - round(octaveLatency)) * factor << ")" << endl;
c@116 232
c@116 233 cerr << "double(" << totalLatency << " - "
c@116 234 << latencies[i] << " - " << drops[i] << " + "
c@116 235 << m_bigBlockSize << ") / " << factor << " = "
c@116 236 << octaveLatency << endl;
c@116 237 #endif
c@116 238
c@116 239 m_buffers.push_back
c@116 240 (RealSequence(int(round(octaveLatency)), 0.0));
c@116 241 }
c@116 242
c@116 243 m_fft = new FFTReal(m_p.fftSize);
c@116 244 }
c@116 245
c@116 246 ConstantQ::ComplexBlock
c@116 247 ConstantQ::process(const RealSequence &td)
c@116 248 {
c@116 249 m_buffers[0].insert(m_buffers[0].end(), td.begin(), td.end());
c@116 250
c@116 251 for (int i = 1; i < m_octaves; ++i) {
c@116 252 RealSequence dec = m_decimators[i]->process(td.data(), td.size());
c@116 253 m_buffers[i].insert(m_buffers[i].end(), dec.begin(), dec.end());
c@116 254 }
c@116 255
c@116 256 ComplexBlock out;
c@116 257
c@116 258 while (true) {
c@116 259
c@116 260 // We could have quite different remaining sample counts in
c@116 261 // different octaves, because (apart from the predictable
c@116 262 // added counts for decimator output on each block) we also
c@116 263 // have variable additional latency per octave
c@116 264 bool enough = true;
c@116 265 for (int i = 0; i < m_octaves; ++i) {
c@116 266 int required = m_p.fftSize * pow(2, m_octaves - i - 1);
c@116 267 if ((int)m_buffers[i].size() < required) {
c@116 268 enough = false;
c@116 269 }
c@116 270 }
c@116 271 if (!enough) break;
c@116 272
c@116 273 int base = out.size();
c@116 274 int totalColumns = pow(2, m_octaves - 1) * m_p.atomsPerFrame;
c@116 275 for (int i = 0; i < totalColumns; ++i) {
c@116 276 out.push_back(ComplexColumn());
c@116 277 }
c@116 278
c@116 279 for (int octave = 0; octave < m_octaves; ++octave) {
c@116 280
c@116 281 int blocksThisOctave = pow(2, (m_octaves - octave - 1));
c@116 282
c@116 283 for (int b = 0; b < blocksThisOctave; ++b) {
c@116 284 ComplexBlock block = processOctaveBlock(octave);
c@116 285
c@116 286 for (int j = 0; j < m_p.atomsPerFrame; ++j) {
c@116 287
c@116 288 int target = base +
c@116 289 (b * (totalColumns / blocksThisOctave) +
c@116 290 (j * ((totalColumns / blocksThisOctave) /
c@116 291 m_p.atomsPerFrame)));
c@116 292
c@116 293 while (int(out[target].size()) <
c@116 294 m_p.binsPerOctave * (octave + 1)) {
c@116 295 out[target].push_back(Complex());
c@116 296 }
c@116 297
c@116 298 for (int i = 0; i < m_p.binsPerOctave; ++i) {
c@116 299 out[target][m_p.binsPerOctave * octave + i] =
c@116 300 block[j][m_p.binsPerOctave - i - 1];
c@116 301 }
c@116 302 }
c@116 303 }
c@116 304 }
c@116 305 }
c@116 306
c@116 307 return out;
c@116 308 }
c@116 309
c@116 310 ConstantQ::ComplexBlock
c@116 311 ConstantQ::getRemainingOutput()
c@116 312 {
c@116 313 // Same as padding added at start, though rounded up
c@116 314 int pad = ceil(double(m_outputLatency) / m_bigBlockSize) * m_bigBlockSize;
c@116 315 RealSequence zeros(pad, 0.0);
c@116 316 return process(zeros);
c@116 317 }
c@116 318
c@116 319 ConstantQ::ComplexBlock
c@116 320 ConstantQ::processOctaveBlock(int octave)
c@116 321 {
c@116 322 RealSequence ro(m_p.fftSize, 0.0);
c@116 323 RealSequence io(m_p.fftSize, 0.0);
c@116 324
c@116 325 m_fft->forward(m_buffers[octave].data(), ro.data(), io.data());
c@116 326
c@116 327 RealSequence shifted;
c@116 328 shifted.insert(shifted.end(),
c@116 329 m_buffers[octave].begin() + m_p.fftHop,
c@116 330 m_buffers[octave].end());
c@116 331 m_buffers[octave] = shifted;
c@116 332
c@116 333 ComplexSequence cv;
c@116 334 for (int i = 0; i < m_p.fftSize; ++i) {
c@116 335 cv.push_back(Complex(ro[i], io[i]));
c@116 336 }
c@116 337
c@116 338 ComplexSequence cqrowvec = m_kernel->processForward(cv);
c@116 339
c@116 340 // Reform into a column matrix
c@116 341 ComplexBlock cqblock;
c@116 342 for (int j = 0; j < m_p.atomsPerFrame; ++j) {
c@116 343 cqblock.push_back(ComplexColumn());
c@116 344 for (int i = 0; i < m_p.binsPerOctave; ++i) {
c@116 345 cqblock[j].push_back(cqrowvec[i * m_p.atomsPerFrame + j]);
c@116 346 }
c@116 347 }
c@116 348
c@116 349 return cqblock;
c@116 350 }
c@116 351
c@116 352