Mercurial > hg > chourdakisreiss2016
diff experiment-reverb/code/plots.py @ 0:246d5546657c
initial commit, needs cleanup
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Wed, 14 Dec 2016 13:15:48 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/experiment-reverb/code/plots.py Wed Dec 14 13:15:48 2016 +0000 @@ -0,0 +1,212 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon Jul 13 06:45:38 2015 + +@author: Emmanouil Theofanis Chourdakis +""" + + +# Plots for our paper + +from numpy import * +import matplotlib.pyplot as plt +from matplotlib import rc +#from matplotlib2tikz import save as tikz_save +rc('font',**{'family':'serif','serif':['Palatino']}) +rc('text', usetex=True) +rc('pgf', texsystem='pdflatex') + +sucrats1 = (0.716, 0.793, 0.703, 0.696, 0.820) +sucrats2 = (0.789, 0.789, 0.729, 0.525, 0.793) +sucrats3 = (0.769, 0.736, 0.760, 0.537, 0.709) +sucrats4 = (0.689, 0.689, 0.552, 0.562, 0.673) +sucrats5 = (0.80508403361344549, 0.77222689075630258, 0.76915966386554613, 0.5345168067226892, 0.7770588235294118) +sucrats6 = (0.796, 0.898, 0.798, 0.563, 0.875) + +example = {'SIM/C1':(0.5,0.7,0.6,0.8), 'FUL/C1':(0.6,0.7,0.9,0.8), 'SIM/C2': (0.4,0.3,0.5,0.6)} + +FONTSIZE=20 + +GNBCR = [] +SVMR = [] +HMMCR = [] +HMMSVMR = [] +SINKHOLE = [] + + + + +labels = ['Set 1', 'Set 2', 'Set 3', 'Set 4', 'Set 5', 'Set 6'] + +results = [sucrats1, sucrats2, sucrats3, sucrats4] + +for i in range(0, len(results)): + GNBCR.append(results[i][0]) + SVMR.append(results[i][1]) + HMMCR.append(results[i][2]) + HMMSVMR.append(results[i][3]) + SINKHOLE.append(results[i][4]) + + +pos = list(range(len(SVMR))) +width = 0.15 + +fig,ax=plt.subplots(figsize=(10,10)) + +bar1=plt.bar(pos, GNBCR, width, + alpha=0.5, + color='r', + hatch='x', # this one defines the fill pattern + label=labels[0]) + +plt.bar([p + width for p in pos], SVMR, width, + alpha=0.5, + color='g', + hatch='-', + label=labels[1]) + +plt.bar([p + width*2 for p in pos], HMMCR, width, + alpha=0.5, + color='b', + hatch='', + label=labels[2]) + +plt.bar([p + width*3 for p in pos], HMMSVMR, width, + alpha=0.5, + color='c',hatch='/', + label=labels[3]) + +plt.bar([p + width*4 for p in pos], SINKHOLE, width, + alpha=0.5, + color='m',hatch='\\', + label=labels[3]) + + + +# Setting axis labels and ticks +ax.set_ylabel('Success Ratio', fontsize=FONTSIZE) +ax.set_xlabel('Data set', fontsize=FONTSIZE) +ax.set_title('Classifier Success Ratio', fontsize=FONTSIZE) +ax.set_xticks([p + 2 * width for p in pos]) +ax.set_yticks([0, 0.2, 0.6, 0.8, 1.0]) +ax.set_xticklabels(labels, fontsize=FONTSIZE) +ax.set_yticklabels([0, 0.2, 0.6, 0.8, 1.0], fontsize=FONTSIZE) + +# Setting the x-axis and y-axis limits +plt.xlim(min(pos)-width, max(pos)+width*6) +plt.ylim([0,1.2]) + +# Adding the legend and showing the plot +leg = plt.legend(['GNB', 'SVM', 'HMM', 'HMM/SVM', 'SINK-HOLE'], loc='upper right', fontsize=FONTSIZE, fancybox=True) + +# leg.get_frame().set_alpha(0.5) +plt.grid() +#plt.show() + +#tikz_save('plot.tkz', figureheight='4cm', figurewidth='6cm') +fig.tight_layout() +fig.savefig('./plot.pgf', dpi=500) + +from sklearn import metrics +def plot_confusion_matrix(y_pred, y): + plt.imshow(metrics.confusion_matrix(y, y_pred), + cmap=plt.cm.binary, interpolation='nearest') + plt.colorbar() + plt.xlabel('true value') + plt.ylabel('predicted value') + +#plt.figure() +#plot_confusion_matrix(predhmmc3, parameters_state) + + +msecrats1 = (0.015, 0.013, 0.019, 0.012, 0.007) +msecrats2 = (0.005, 0.006, 0.009, 0.007, 0.004) +msecrats3 = (0.018, 0.020, 0.014, 0.019, 0.019) +msecrats4 = (0.010, 0.010, 0.018, 0.010, 0.010) +msecrats5 = (0.097, 0.014, 0.013, 0.017, 0.010) +msecrats6 = (0.006, 0.003, 0.012, 0.013, 0.003) + + +results = [msecrats1, msecrats2, msecrats3, msecrats4, msecrats5, msecrats6] + +GNBCR = [] +SVMR = [] +HMMCR = [] +HMMSVMR = [] +SINKHOLE = [] +for i in range(0, len(results)): + GNBCR.append(results[i][0]) + SVMR.append(results[i][1]) + HMMCR.append(results[i][2]) + HMMSVMR.append(results[i][3]) + SINKHOLE.append(results[i][4]) + +pos = list(range(len(SVMR))) + +plt.close('all') +#plt.figure() +fig,ax=plt.subplots(figsize=(10,10)) + + + +bar1=plt.barh(pos, GNBCR, width, + alpha=0.5, + color='r', + hatch='x', # this one defines the fill pattern + label=labels[0]) + +plt.barh([p + width for p in pos], SVMR, width, + alpha=0.5, + color='g', + hatch='-', + label=labels[1]) + +plt.barh([p + width*2 for p in pos], HMMCR, width, + alpha=0.5, + color='b', + hatch='', + label=labels[2]) + +plt.barh([p + width*3 for p in pos], HMMSVMR, width, + alpha=0.5, + color='c',hatch='/', + label=labels[3]) + +plt.barh([p + width*4 for p in pos], SINKHOLE, width, + alpha=0.5, + color='m',hatch='\\', + label=labels[3]) + + +# Setting axis labels and ticks +ax.set_ylabel('Data set', fontsize=FONTSIZE) +ax.set_xlabel('Mean Squared Error', fontsize=FONTSIZE) +ax.set_title('Mean Squared Errors', fontsize=FONTSIZE) +ax.set_yticks([p + 2 * width for p in pos]) +ax.set_xticks([0, 0.02]) +ax.set_yticklabels(labels, fontsize=FONTSIZE) +ax.set_xticklabels([0, 0.02], fontsize=FONTSIZE) + +# Setting the x-axis and y-axis limits +plt.ylim(min(pos)-width, max(pos)+width*6) +plt.xlim([0,0.03]) + +# Adding the legend and showing the plot +leg = plt.legend(['GNB', 'SVM', 'HMM', 'HMM/SVM', 'SINK-HOLE'], loc='upper right', fontsize=FONTSIZE, fancybox=True) + +# leg.get_frame().set_alpha(0.5) +plt.grid() + + +#tikz_save('plot.tkz', figureheight='4cm', figurewidth='6cm') +fig.tight_layout() +fig.savefig('./plotmses.pgf', dpi=500) + +from sklearn import metrics +def plot_confusion_matrix(y_pred, y): + plt.imshow(metrics.confusion_matrix(y, y_pred), + cmap=plt.cm.binary, interpolation='nearest') + plt.colorbar() + plt.xlabel('true value') + plt.ylabel('predicted value') +#plt.show()