Mercurial > hg > chourdakisreiss2016
view experiment-reverb/code/plots.py @ 2:c87a9505f294 tip
Added LICENSE for code, removed .wav files
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Sat, 30 Sep 2017 13:25:50 +0100 |
parents | 246d5546657c |
children |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Mon Jul 13 06:45:38 2015 @author: Emmanouil Theofanis Chourdakis """ # Plots for our paper from numpy import * import matplotlib.pyplot as plt from matplotlib import rc #from matplotlib2tikz import save as tikz_save rc('font',**{'family':'serif','serif':['Palatino']}) rc('text', usetex=True) rc('pgf', texsystem='pdflatex') sucrats1 = (0.716, 0.793, 0.703, 0.696, 0.820) sucrats2 = (0.789, 0.789, 0.729, 0.525, 0.793) sucrats3 = (0.769, 0.736, 0.760, 0.537, 0.709) sucrats4 = (0.689, 0.689, 0.552, 0.562, 0.673) sucrats5 = (0.80508403361344549, 0.77222689075630258, 0.76915966386554613, 0.5345168067226892, 0.7770588235294118) sucrats6 = (0.796, 0.898, 0.798, 0.563, 0.875) example = {'SIM/C1':(0.5,0.7,0.6,0.8), 'FUL/C1':(0.6,0.7,0.9,0.8), 'SIM/C2': (0.4,0.3,0.5,0.6)} FONTSIZE=20 GNBCR = [] SVMR = [] HMMCR = [] HMMSVMR = [] SINKHOLE = [] labels = ['Set 1', 'Set 2', 'Set 3', 'Set 4', 'Set 5', 'Set 6'] results = [sucrats1, sucrats2, sucrats3, sucrats4] for i in range(0, len(results)): GNBCR.append(results[i][0]) SVMR.append(results[i][1]) HMMCR.append(results[i][2]) HMMSVMR.append(results[i][3]) SINKHOLE.append(results[i][4]) pos = list(range(len(SVMR))) width = 0.15 fig,ax=plt.subplots(figsize=(10,10)) bar1=plt.bar(pos, GNBCR, width, alpha=0.5, color='r', hatch='x', # this one defines the fill pattern label=labels[0]) plt.bar([p + width for p in pos], SVMR, width, alpha=0.5, color='g', hatch='-', label=labels[1]) plt.bar([p + width*2 for p in pos], HMMCR, width, alpha=0.5, color='b', hatch='', label=labels[2]) plt.bar([p + width*3 for p in pos], HMMSVMR, width, alpha=0.5, color='c',hatch='/', label=labels[3]) plt.bar([p + width*4 for p in pos], SINKHOLE, width, alpha=0.5, color='m',hatch='\\', label=labels[3]) # Setting axis labels and ticks ax.set_ylabel('Success Ratio', fontsize=FONTSIZE) ax.set_xlabel('Data set', fontsize=FONTSIZE) ax.set_title('Classifier Success Ratio', fontsize=FONTSIZE) ax.set_xticks([p + 2 * width for p in pos]) ax.set_yticks([0, 0.2, 0.6, 0.8, 1.0]) ax.set_xticklabels(labels, fontsize=FONTSIZE) ax.set_yticklabels([0, 0.2, 0.6, 0.8, 1.0], fontsize=FONTSIZE) # Setting the x-axis and y-axis limits plt.xlim(min(pos)-width, max(pos)+width*6) plt.ylim([0,1.2]) # Adding the legend and showing the plot leg = plt.legend(['GNB', 'SVM', 'HMM', 'HMM/SVM', 'SINK-HOLE'], loc='upper right', fontsize=FONTSIZE, fancybox=True) # leg.get_frame().set_alpha(0.5) plt.grid() #plt.show() #tikz_save('plot.tkz', figureheight='4cm', figurewidth='6cm') fig.tight_layout() fig.savefig('./plot.pgf', dpi=500) from sklearn import metrics def plot_confusion_matrix(y_pred, y): plt.imshow(metrics.confusion_matrix(y, y_pred), cmap=plt.cm.binary, interpolation='nearest') plt.colorbar() plt.xlabel('true value') plt.ylabel('predicted value') #plt.figure() #plot_confusion_matrix(predhmmc3, parameters_state) msecrats1 = (0.015, 0.013, 0.019, 0.012, 0.007) msecrats2 = (0.005, 0.006, 0.009, 0.007, 0.004) msecrats3 = (0.018, 0.020, 0.014, 0.019, 0.019) msecrats4 = (0.010, 0.010, 0.018, 0.010, 0.010) msecrats5 = (0.097, 0.014, 0.013, 0.017, 0.010) msecrats6 = (0.006, 0.003, 0.012, 0.013, 0.003) results = [msecrats1, msecrats2, msecrats3, msecrats4, msecrats5, msecrats6] GNBCR = [] SVMR = [] HMMCR = [] HMMSVMR = [] SINKHOLE = [] for i in range(0, len(results)): GNBCR.append(results[i][0]) SVMR.append(results[i][1]) HMMCR.append(results[i][2]) HMMSVMR.append(results[i][3]) SINKHOLE.append(results[i][4]) pos = list(range(len(SVMR))) plt.close('all') #plt.figure() fig,ax=plt.subplots(figsize=(10,10)) bar1=plt.barh(pos, GNBCR, width, alpha=0.5, color='r', hatch='x', # this one defines the fill pattern label=labels[0]) plt.barh([p + width for p in pos], SVMR, width, alpha=0.5, color='g', hatch='-', label=labels[1]) plt.barh([p + width*2 for p in pos], HMMCR, width, alpha=0.5, color='b', hatch='', label=labels[2]) plt.barh([p + width*3 for p in pos], HMMSVMR, width, alpha=0.5, color='c',hatch='/', label=labels[3]) plt.barh([p + width*4 for p in pos], SINKHOLE, width, alpha=0.5, color='m',hatch='\\', label=labels[3]) # Setting axis labels and ticks ax.set_ylabel('Data set', fontsize=FONTSIZE) ax.set_xlabel('Mean Squared Error', fontsize=FONTSIZE) ax.set_title('Mean Squared Errors', fontsize=FONTSIZE) ax.set_yticks([p + 2 * width for p in pos]) ax.set_xticks([0, 0.02]) ax.set_yticklabels(labels, fontsize=FONTSIZE) ax.set_xticklabels([0, 0.02], fontsize=FONTSIZE) # Setting the x-axis and y-axis limits plt.ylim(min(pos)-width, max(pos)+width*6) plt.xlim([0,0.03]) # Adding the legend and showing the plot leg = plt.legend(['GNB', 'SVM', 'HMM', 'HMM/SVM', 'SINK-HOLE'], loc='upper right', fontsize=FONTSIZE, fancybox=True) # leg.get_frame().set_alpha(0.5) plt.grid() #tikz_save('plot.tkz', figureheight='4cm', figurewidth='6cm') fig.tight_layout() fig.savefig('./plotmses.pgf', dpi=500) from sklearn import metrics def plot_confusion_matrix(y_pred, y): plt.imshow(metrics.confusion_matrix(y, y_pred), cmap=plt.cm.binary, interpolation='nearest') plt.colorbar() plt.xlabel('true value') plt.ylabel('predicted value') #plt.show()