comparison experiment-reverb/code/plots.py @ 0:246d5546657c

initial commit, needs cleanup
author Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk>
date Wed, 14 Dec 2016 13:15:48 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:246d5546657c
1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Jul 13 06:45:38 2015
4
5 @author: Emmanouil Theofanis Chourdakis
6 """
7
8
9 # Plots for our paper
10
11 from numpy import *
12 import matplotlib.pyplot as plt
13 from matplotlib import rc
14 #from matplotlib2tikz import save as tikz_save
15 rc('font',**{'family':'serif','serif':['Palatino']})
16 rc('text', usetex=True)
17 rc('pgf', texsystem='pdflatex')
18
19 sucrats1 = (0.716, 0.793, 0.703, 0.696, 0.820)
20 sucrats2 = (0.789, 0.789, 0.729, 0.525, 0.793)
21 sucrats3 = (0.769, 0.736, 0.760, 0.537, 0.709)
22 sucrats4 = (0.689, 0.689, 0.552, 0.562, 0.673)
23 sucrats5 = (0.80508403361344549, 0.77222689075630258, 0.76915966386554613, 0.5345168067226892, 0.7770588235294118)
24 sucrats6 = (0.796, 0.898, 0.798, 0.563, 0.875)
25
26 example = {'SIM/C1':(0.5,0.7,0.6,0.8), 'FUL/C1':(0.6,0.7,0.9,0.8), 'SIM/C2': (0.4,0.3,0.5,0.6)}
27
28 FONTSIZE=20
29
30 GNBCR = []
31 SVMR = []
32 HMMCR = []
33 HMMSVMR = []
34 SINKHOLE = []
35
36
37
38
39 labels = ['Set 1', 'Set 2', 'Set 3', 'Set 4', 'Set 5', 'Set 6']
40
41 results = [sucrats1, sucrats2, sucrats3, sucrats4]
42
43 for i in range(0, len(results)):
44 GNBCR.append(results[i][0])
45 SVMR.append(results[i][1])
46 HMMCR.append(results[i][2])
47 HMMSVMR.append(results[i][3])
48 SINKHOLE.append(results[i][4])
49
50
51 pos = list(range(len(SVMR)))
52 width = 0.15
53
54 fig,ax=plt.subplots(figsize=(10,10))
55
56 bar1=plt.bar(pos, GNBCR, width,
57 alpha=0.5,
58 color='r',
59 hatch='x', # this one defines the fill pattern
60 label=labels[0])
61
62 plt.bar([p + width for p in pos], SVMR, width,
63 alpha=0.5,
64 color='g',
65 hatch='-',
66 label=labels[1])
67
68 plt.bar([p + width*2 for p in pos], HMMCR, width,
69 alpha=0.5,
70 color='b',
71 hatch='',
72 label=labels[2])
73
74 plt.bar([p + width*3 for p in pos], HMMSVMR, width,
75 alpha=0.5,
76 color='c',hatch='/',
77 label=labels[3])
78
79 plt.bar([p + width*4 for p in pos], SINKHOLE, width,
80 alpha=0.5,
81 color='m',hatch='\\',
82 label=labels[3])
83
84
85
86 # Setting axis labels and ticks
87 ax.set_ylabel('Success Ratio', fontsize=FONTSIZE)
88 ax.set_xlabel('Data set', fontsize=FONTSIZE)
89 ax.set_title('Classifier Success Ratio', fontsize=FONTSIZE)
90 ax.set_xticks([p + 2 * width for p in pos])
91 ax.set_yticks([0, 0.2, 0.6, 0.8, 1.0])
92 ax.set_xticklabels(labels, fontsize=FONTSIZE)
93 ax.set_yticklabels([0, 0.2, 0.6, 0.8, 1.0], fontsize=FONTSIZE)
94
95 # Setting the x-axis and y-axis limits
96 plt.xlim(min(pos)-width, max(pos)+width*6)
97 plt.ylim([0,1.2])
98
99 # Adding the legend and showing the plot
100 leg = plt.legend(['GNB', 'SVM', 'HMM', 'HMM/SVM', 'SINK-HOLE'], loc='upper right', fontsize=FONTSIZE, fancybox=True)
101
102 # leg.get_frame().set_alpha(0.5)
103 plt.grid()
104 #plt.show()
105
106 #tikz_save('plot.tkz', figureheight='4cm', figurewidth='6cm')
107 fig.tight_layout()
108 fig.savefig('./plot.pgf', dpi=500)
109
110 from sklearn import metrics
111 def plot_confusion_matrix(y_pred, y):
112 plt.imshow(metrics.confusion_matrix(y, y_pred),
113 cmap=plt.cm.binary, interpolation='nearest')
114 plt.colorbar()
115 plt.xlabel('true value')
116 plt.ylabel('predicted value')
117
118 #plt.figure()
119 #plot_confusion_matrix(predhmmc3, parameters_state)
120
121
122 msecrats1 = (0.015, 0.013, 0.019, 0.012, 0.007)
123 msecrats2 = (0.005, 0.006, 0.009, 0.007, 0.004)
124 msecrats3 = (0.018, 0.020, 0.014, 0.019, 0.019)
125 msecrats4 = (0.010, 0.010, 0.018, 0.010, 0.010)
126 msecrats5 = (0.097, 0.014, 0.013, 0.017, 0.010)
127 msecrats6 = (0.006, 0.003, 0.012, 0.013, 0.003)
128
129
130 results = [msecrats1, msecrats2, msecrats3, msecrats4, msecrats5, msecrats6]
131
132 GNBCR = []
133 SVMR = []
134 HMMCR = []
135 HMMSVMR = []
136 SINKHOLE = []
137 for i in range(0, len(results)):
138 GNBCR.append(results[i][0])
139 SVMR.append(results[i][1])
140 HMMCR.append(results[i][2])
141 HMMSVMR.append(results[i][3])
142 SINKHOLE.append(results[i][4])
143
144 pos = list(range(len(SVMR)))
145
146 plt.close('all')
147 #plt.figure()
148 fig,ax=plt.subplots(figsize=(10,10))
149
150
151
152 bar1=plt.barh(pos, GNBCR, width,
153 alpha=0.5,
154 color='r',
155 hatch='x', # this one defines the fill pattern
156 label=labels[0])
157
158 plt.barh([p + width for p in pos], SVMR, width,
159 alpha=0.5,
160 color='g',
161 hatch='-',
162 label=labels[1])
163
164 plt.barh([p + width*2 for p in pos], HMMCR, width,
165 alpha=0.5,
166 color='b',
167 hatch='',
168 label=labels[2])
169
170 plt.barh([p + width*3 for p in pos], HMMSVMR, width,
171 alpha=0.5,
172 color='c',hatch='/',
173 label=labels[3])
174
175 plt.barh([p + width*4 for p in pos], SINKHOLE, width,
176 alpha=0.5,
177 color='m',hatch='\\',
178 label=labels[3])
179
180
181 # Setting axis labels and ticks
182 ax.set_ylabel('Data set', fontsize=FONTSIZE)
183 ax.set_xlabel('Mean Squared Error', fontsize=FONTSIZE)
184 ax.set_title('Mean Squared Errors', fontsize=FONTSIZE)
185 ax.set_yticks([p + 2 * width for p in pos])
186 ax.set_xticks([0, 0.02])
187 ax.set_yticklabels(labels, fontsize=FONTSIZE)
188 ax.set_xticklabels([0, 0.02], fontsize=FONTSIZE)
189
190 # Setting the x-axis and y-axis limits
191 plt.ylim(min(pos)-width, max(pos)+width*6)
192 plt.xlim([0,0.03])
193
194 # Adding the legend and showing the plot
195 leg = plt.legend(['GNB', 'SVM', 'HMM', 'HMM/SVM', 'SINK-HOLE'], loc='upper right', fontsize=FONTSIZE, fancybox=True)
196
197 # leg.get_frame().set_alpha(0.5)
198 plt.grid()
199
200
201 #tikz_save('plot.tkz', figureheight='4cm', figurewidth='6cm')
202 fig.tight_layout()
203 fig.savefig('./plotmses.pgf', dpi=500)
204
205 from sklearn import metrics
206 def plot_confusion_matrix(y_pred, y):
207 plt.imshow(metrics.confusion_matrix(y, y_pred),
208 cmap=plt.cm.binary, interpolation='nearest')
209 plt.colorbar()
210 plt.xlabel('true value')
211 plt.ylabel('predicted value')
212 #plt.show()