Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Square/mk_square_hhmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Square/mk_square_hhmm.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,180 @@ +function bnet = mk_square_hhmm(discrete_obs, true_params, topright) + +% Make a 3 level HHMM described by the following grammar +% +% Square -> CLK | CCK % clockwise or counterclockwise +% CLK -> LR UD RL DU start on top left (1 2 3 4) +% CCK -> RL UD LR DU if start at top right (3 2 1 4) +% CCK -> UD LR DU RL if start at top left (2 1 4 3) +% +% LR = left-right, UD = up-down, RL = right-left, DU = down-up +% LR, UD, RL, DU are sub HMMs. +% +% For discrete observations, the subHMMs are 2-state left-right. +% LR emits L then l, etc. +% +% For cts observations, the subHMMs are 1 state. +% LR emits a vector in the -> direction, with a little noise. +% Since there is no constraint that we remain in the LR state as long as the RL state, +% the sides of the square might have different lengths, +% so the result is not really a square! +% +% If true_params = 0, we use random parameters at the top 2 levels +% (ready for learning). At the bottom level, we use noisy versions +% of the "true" observations. +% +% If topright=1, counter-clockwise starts at top right, not top left +% This example was inspired by Ivanov and Bobick. + +if nargin < 3, topright = 1; end + +if 1 % discrete_obs + Qsizes = [2 4 2]; +else + Qsizes = [2 4 1]; +end + +D = 3; +Qnodes = 1:D; +startprob = cell(1,D); +transprob = cell(1,D); +termprob = cell(1,D); + +% LEVEL 1 + +startprob{1} = 'unif'; +transprob{1} = 'unif'; + +% LEVEL 2 + +if true_params + startprob{2} = zeros(2, 4); + startprob{2}(1, :) = [1 0 0 0]; + if topright + startprob{2}(2, :) = [0 0 1 0]; + else + startprob{2}(2, :) = [0 1 0 0]; + end + + transprob{2} = zeros(4, 2, 4); + + transprob{2}(:,1,:) = [0 1 0 0 + 0 0 1 0 + 0 0 0 1 + 0 0 0 1]; % 4->e + if topright + transprob{2}(:,2,:) = [0 0 0 1 + 1 0 0 0 + 0 1 0 0 + 0 0 0 1]; % 4->e + else + transprob{2}(:,2,:) = [0 0 0 1 + 1 0 0 0 + 0 0 1 0 % 3->e + 0 0 1 0]; + end + + %termprob{2} = 'rightstop'; + termprob{2} = zeros(2,4); + pfin = 0.8; + termprob{2}(1,:) = [0 0 0 pfin]; % finish in state 4 (DU) + if topright + termprob{2}(2,:) = [0 0 0 pfin]; + else + termprob{2}(2,:) = [0 0 pfin 0]; % finish in state 3 (RL) + end +else + % In the unsupervised case, it is essential that we break symmetry + % in the initial param estimates. + %startprob{2} = 'unif'; + %transprob{2} = 'unif'; + %termprob{2} = 'unif'; + startprob{2} = 'rnd'; + transprob{2} = 'rnd'; + termprob{2} = 'rnd'; +end + +% LEVEL 3 + +if 1 | true_params + startprob{3} = 'leftstart'; + transprob{3} = 'leftright'; + termprob{3} = 'rightstop'; +else + % If we want to be able to run a base-level model backwards... + startprob{3} = 'rnd'; + transprob{3} = 'rnd'; + termprob{3} = 'rnd'; +end + + +% OBS LEVEl + +if discrete_obs + % Initialise observations of lowest level primitives in a way which we can interpret + chars = ['L', 'l', 'U', 'u', 'R', 'r', 'D', 'd']; + L=find(chars=='L'); l=find(chars=='l'); + U=find(chars=='U'); u=find(chars=='u'); + R=find(chars=='R'); r=find(chars=='r'); + D=find(chars=='D'); d=find(chars=='d'); + Osize = length(chars); + + if true_params + p = 1; % makes each state fully observed + else + p = 0.9; + end + + obsprob = (1-p)*ones([4 2 Osize]); + % Q2 Q3 O + obsprob(1, 1, L) = p; + obsprob(1, 2, l) = p; + obsprob(2, 1, U) = p; + obsprob(2, 2, u) = p; + obsprob(3, 1, R) = p; + obsprob(3, 2, r) = p; + obsprob(4, 1, D) = p; + obsprob(4, 2, d) = p; + obsprob = mk_stochastic(obsprob); + Oargs = {'CPT', obsprob}; +else + % Initialise means of lowest level primitives in a way which we can interpret + % These means are little vectors in the east, south, west, north directions. + % (left-right=east, up-down=south, right-left=west, down-up=north) + Osize = 2; + mu = zeros(2, Qsizes(2), Qsizes(3)); + scale = 3; + if true_params + noise = 0; + else + noise = 0.5*scale; + end + for q3=1:Qsizes(3) + mu(:, 1, q3) = scale*[1;0] + noise*rand(2,1); + end + for q3=1:Qsizes(3) + mu(:, 2, q3) = scale*[0;-1] + noise*rand(2,1); + end + for q3=1:Qsizes(3) + mu(:, 3, q3) = scale*[-1;0] + noise*rand(2,1); + end + for q3=1:Qsizes(3) + mu(:, 4, q3) = scale*[0;1] + noise*rand(2,1); + end + Sigma = repmat(reshape(scale*eye(2), [2 2 1 1 ]), [1 1 Qsizes(2) Qsizes(3)]); + Oargs = {'mean', mu, 'cov', Sigma, 'cov_type', 'diag'}; +end + +if discrete_obs + selfprob = 0.5; +else + selfprob = 0.95; + % If less than this, it won't look like a square + % because it doesn't spend enough time in each state + % Unfortunately, the variance on durations (lengths of each side) + % is very large +end +bnet = mk_hhmm('Qsizes', Qsizes, 'Osize', Osize', 'discrete_obs', discrete_obs, ... + 'Oargs', Oargs, 'Ops', Qnodes(2:3), 'selfprob', selfprob, ... + 'startprob', startprob, 'transprob', transprob, 'termprob', termprob); +