Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Square/mk_square_hhmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function bnet = mk_square_hhmm(discrete_obs, true_params, topright) | |
2 | |
3 % Make a 3 level HHMM described by the following grammar | |
4 % | |
5 % Square -> CLK | CCK % clockwise or counterclockwise | |
6 % CLK -> LR UD RL DU start on top left (1 2 3 4) | |
7 % CCK -> RL UD LR DU if start at top right (3 2 1 4) | |
8 % CCK -> UD LR DU RL if start at top left (2 1 4 3) | |
9 % | |
10 % LR = left-right, UD = up-down, RL = right-left, DU = down-up | |
11 % LR, UD, RL, DU are sub HMMs. | |
12 % | |
13 % For discrete observations, the subHMMs are 2-state left-right. | |
14 % LR emits L then l, etc. | |
15 % | |
16 % For cts observations, the subHMMs are 1 state. | |
17 % LR emits a vector in the -> direction, with a little noise. | |
18 % Since there is no constraint that we remain in the LR state as long as the RL state, | |
19 % the sides of the square might have different lengths, | |
20 % so the result is not really a square! | |
21 % | |
22 % If true_params = 0, we use random parameters at the top 2 levels | |
23 % (ready for learning). At the bottom level, we use noisy versions | |
24 % of the "true" observations. | |
25 % | |
26 % If topright=1, counter-clockwise starts at top right, not top left | |
27 % This example was inspired by Ivanov and Bobick. | |
28 | |
29 if nargin < 3, topright = 1; end | |
30 | |
31 if 1 % discrete_obs | |
32 Qsizes = [2 4 2]; | |
33 else | |
34 Qsizes = [2 4 1]; | |
35 end | |
36 | |
37 D = 3; | |
38 Qnodes = 1:D; | |
39 startprob = cell(1,D); | |
40 transprob = cell(1,D); | |
41 termprob = cell(1,D); | |
42 | |
43 % LEVEL 1 | |
44 | |
45 startprob{1} = 'unif'; | |
46 transprob{1} = 'unif'; | |
47 | |
48 % LEVEL 2 | |
49 | |
50 if true_params | |
51 startprob{2} = zeros(2, 4); | |
52 startprob{2}(1, :) = [1 0 0 0]; | |
53 if topright | |
54 startprob{2}(2, :) = [0 0 1 0]; | |
55 else | |
56 startprob{2}(2, :) = [0 1 0 0]; | |
57 end | |
58 | |
59 transprob{2} = zeros(4, 2, 4); | |
60 | |
61 transprob{2}(:,1,:) = [0 1 0 0 | |
62 0 0 1 0 | |
63 0 0 0 1 | |
64 0 0 0 1]; % 4->e | |
65 if topright | |
66 transprob{2}(:,2,:) = [0 0 0 1 | |
67 1 0 0 0 | |
68 0 1 0 0 | |
69 0 0 0 1]; % 4->e | |
70 else | |
71 transprob{2}(:,2,:) = [0 0 0 1 | |
72 1 0 0 0 | |
73 0 0 1 0 % 3->e | |
74 0 0 1 0]; | |
75 end | |
76 | |
77 %termprob{2} = 'rightstop'; | |
78 termprob{2} = zeros(2,4); | |
79 pfin = 0.8; | |
80 termprob{2}(1,:) = [0 0 0 pfin]; % finish in state 4 (DU) | |
81 if topright | |
82 termprob{2}(2,:) = [0 0 0 pfin]; | |
83 else | |
84 termprob{2}(2,:) = [0 0 pfin 0]; % finish in state 3 (RL) | |
85 end | |
86 else | |
87 % In the unsupervised case, it is essential that we break symmetry | |
88 % in the initial param estimates. | |
89 %startprob{2} = 'unif'; | |
90 %transprob{2} = 'unif'; | |
91 %termprob{2} = 'unif'; | |
92 startprob{2} = 'rnd'; | |
93 transprob{2} = 'rnd'; | |
94 termprob{2} = 'rnd'; | |
95 end | |
96 | |
97 % LEVEL 3 | |
98 | |
99 if 1 | true_params | |
100 startprob{3} = 'leftstart'; | |
101 transprob{3} = 'leftright'; | |
102 termprob{3} = 'rightstop'; | |
103 else | |
104 % If we want to be able to run a base-level model backwards... | |
105 startprob{3} = 'rnd'; | |
106 transprob{3} = 'rnd'; | |
107 termprob{3} = 'rnd'; | |
108 end | |
109 | |
110 | |
111 % OBS LEVEl | |
112 | |
113 if discrete_obs | |
114 % Initialise observations of lowest level primitives in a way which we can interpret | |
115 chars = ['L', 'l', 'U', 'u', 'R', 'r', 'D', 'd']; | |
116 L=find(chars=='L'); l=find(chars=='l'); | |
117 U=find(chars=='U'); u=find(chars=='u'); | |
118 R=find(chars=='R'); r=find(chars=='r'); | |
119 D=find(chars=='D'); d=find(chars=='d'); | |
120 Osize = length(chars); | |
121 | |
122 if true_params | |
123 p = 1; % makes each state fully observed | |
124 else | |
125 p = 0.9; | |
126 end | |
127 | |
128 obsprob = (1-p)*ones([4 2 Osize]); | |
129 % Q2 Q3 O | |
130 obsprob(1, 1, L) = p; | |
131 obsprob(1, 2, l) = p; | |
132 obsprob(2, 1, U) = p; | |
133 obsprob(2, 2, u) = p; | |
134 obsprob(3, 1, R) = p; | |
135 obsprob(3, 2, r) = p; | |
136 obsprob(4, 1, D) = p; | |
137 obsprob(4, 2, d) = p; | |
138 obsprob = mk_stochastic(obsprob); | |
139 Oargs = {'CPT', obsprob}; | |
140 else | |
141 % Initialise means of lowest level primitives in a way which we can interpret | |
142 % These means are little vectors in the east, south, west, north directions. | |
143 % (left-right=east, up-down=south, right-left=west, down-up=north) | |
144 Osize = 2; | |
145 mu = zeros(2, Qsizes(2), Qsizes(3)); | |
146 scale = 3; | |
147 if true_params | |
148 noise = 0; | |
149 else | |
150 noise = 0.5*scale; | |
151 end | |
152 for q3=1:Qsizes(3) | |
153 mu(:, 1, q3) = scale*[1;0] + noise*rand(2,1); | |
154 end | |
155 for q3=1:Qsizes(3) | |
156 mu(:, 2, q3) = scale*[0;-1] + noise*rand(2,1); | |
157 end | |
158 for q3=1:Qsizes(3) | |
159 mu(:, 3, q3) = scale*[-1;0] + noise*rand(2,1); | |
160 end | |
161 for q3=1:Qsizes(3) | |
162 mu(:, 4, q3) = scale*[0;1] + noise*rand(2,1); | |
163 end | |
164 Sigma = repmat(reshape(scale*eye(2), [2 2 1 1 ]), [1 1 Qsizes(2) Qsizes(3)]); | |
165 Oargs = {'mean', mu, 'cov', Sigma, 'cov_type', 'diag'}; | |
166 end | |
167 | |
168 if discrete_obs | |
169 selfprob = 0.5; | |
170 else | |
171 selfprob = 0.95; | |
172 % If less than this, it won't look like a square | |
173 % because it doesn't spend enough time in each state | |
174 % Unfortunately, the variance on durations (lengths of each side) | |
175 % is very large | |
176 end | |
177 bnet = mk_hhmm('Qsizes', Qsizes, 'Osize', Osize', 'discrete_obs', discrete_obs, ... | |
178 'Oargs', Oargs, 'Ops', Qnodes(2:3), 'selfprob', selfprob, ... | |
179 'startprob', startprob, 'transprob', transprob, 'termprob', termprob); | |
180 |