wolffd@0
|
1 function bnet = mk_square_hhmm(discrete_obs, true_params, topright)
|
wolffd@0
|
2
|
wolffd@0
|
3 % Make a 3 level HHMM described by the following grammar
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % Square -> CLK | CCK % clockwise or counterclockwise
|
wolffd@0
|
6 % CLK -> LR UD RL DU start on top left (1 2 3 4)
|
wolffd@0
|
7 % CCK -> RL UD LR DU if start at top right (3 2 1 4)
|
wolffd@0
|
8 % CCK -> UD LR DU RL if start at top left (2 1 4 3)
|
wolffd@0
|
9 %
|
wolffd@0
|
10 % LR = left-right, UD = up-down, RL = right-left, DU = down-up
|
wolffd@0
|
11 % LR, UD, RL, DU are sub HMMs.
|
wolffd@0
|
12 %
|
wolffd@0
|
13 % For discrete observations, the subHMMs are 2-state left-right.
|
wolffd@0
|
14 % LR emits L then l, etc.
|
wolffd@0
|
15 %
|
wolffd@0
|
16 % For cts observations, the subHMMs are 1 state.
|
wolffd@0
|
17 % LR emits a vector in the -> direction, with a little noise.
|
wolffd@0
|
18 % Since there is no constraint that we remain in the LR state as long as the RL state,
|
wolffd@0
|
19 % the sides of the square might have different lengths,
|
wolffd@0
|
20 % so the result is not really a square!
|
wolffd@0
|
21 %
|
wolffd@0
|
22 % If true_params = 0, we use random parameters at the top 2 levels
|
wolffd@0
|
23 % (ready for learning). At the bottom level, we use noisy versions
|
wolffd@0
|
24 % of the "true" observations.
|
wolffd@0
|
25 %
|
wolffd@0
|
26 % If topright=1, counter-clockwise starts at top right, not top left
|
wolffd@0
|
27 % This example was inspired by Ivanov and Bobick.
|
wolffd@0
|
28
|
wolffd@0
|
29 if nargin < 3, topright = 1; end
|
wolffd@0
|
30
|
wolffd@0
|
31 if 1 % discrete_obs
|
wolffd@0
|
32 Qsizes = [2 4 2];
|
wolffd@0
|
33 else
|
wolffd@0
|
34 Qsizes = [2 4 1];
|
wolffd@0
|
35 end
|
wolffd@0
|
36
|
wolffd@0
|
37 D = 3;
|
wolffd@0
|
38 Qnodes = 1:D;
|
wolffd@0
|
39 startprob = cell(1,D);
|
wolffd@0
|
40 transprob = cell(1,D);
|
wolffd@0
|
41 termprob = cell(1,D);
|
wolffd@0
|
42
|
wolffd@0
|
43 % LEVEL 1
|
wolffd@0
|
44
|
wolffd@0
|
45 startprob{1} = 'unif';
|
wolffd@0
|
46 transprob{1} = 'unif';
|
wolffd@0
|
47
|
wolffd@0
|
48 % LEVEL 2
|
wolffd@0
|
49
|
wolffd@0
|
50 if true_params
|
wolffd@0
|
51 startprob{2} = zeros(2, 4);
|
wolffd@0
|
52 startprob{2}(1, :) = [1 0 0 0];
|
wolffd@0
|
53 if topright
|
wolffd@0
|
54 startprob{2}(2, :) = [0 0 1 0];
|
wolffd@0
|
55 else
|
wolffd@0
|
56 startprob{2}(2, :) = [0 1 0 0];
|
wolffd@0
|
57 end
|
wolffd@0
|
58
|
wolffd@0
|
59 transprob{2} = zeros(4, 2, 4);
|
wolffd@0
|
60
|
wolffd@0
|
61 transprob{2}(:,1,:) = [0 1 0 0
|
wolffd@0
|
62 0 0 1 0
|
wolffd@0
|
63 0 0 0 1
|
wolffd@0
|
64 0 0 0 1]; % 4->e
|
wolffd@0
|
65 if topright
|
wolffd@0
|
66 transprob{2}(:,2,:) = [0 0 0 1
|
wolffd@0
|
67 1 0 0 0
|
wolffd@0
|
68 0 1 0 0
|
wolffd@0
|
69 0 0 0 1]; % 4->e
|
wolffd@0
|
70 else
|
wolffd@0
|
71 transprob{2}(:,2,:) = [0 0 0 1
|
wolffd@0
|
72 1 0 0 0
|
wolffd@0
|
73 0 0 1 0 % 3->e
|
wolffd@0
|
74 0 0 1 0];
|
wolffd@0
|
75 end
|
wolffd@0
|
76
|
wolffd@0
|
77 %termprob{2} = 'rightstop';
|
wolffd@0
|
78 termprob{2} = zeros(2,4);
|
wolffd@0
|
79 pfin = 0.8;
|
wolffd@0
|
80 termprob{2}(1,:) = [0 0 0 pfin]; % finish in state 4 (DU)
|
wolffd@0
|
81 if topright
|
wolffd@0
|
82 termprob{2}(2,:) = [0 0 0 pfin];
|
wolffd@0
|
83 else
|
wolffd@0
|
84 termprob{2}(2,:) = [0 0 pfin 0]; % finish in state 3 (RL)
|
wolffd@0
|
85 end
|
wolffd@0
|
86 else
|
wolffd@0
|
87 % In the unsupervised case, it is essential that we break symmetry
|
wolffd@0
|
88 % in the initial param estimates.
|
wolffd@0
|
89 %startprob{2} = 'unif';
|
wolffd@0
|
90 %transprob{2} = 'unif';
|
wolffd@0
|
91 %termprob{2} = 'unif';
|
wolffd@0
|
92 startprob{2} = 'rnd';
|
wolffd@0
|
93 transprob{2} = 'rnd';
|
wolffd@0
|
94 termprob{2} = 'rnd';
|
wolffd@0
|
95 end
|
wolffd@0
|
96
|
wolffd@0
|
97 % LEVEL 3
|
wolffd@0
|
98
|
wolffd@0
|
99 if 1 | true_params
|
wolffd@0
|
100 startprob{3} = 'leftstart';
|
wolffd@0
|
101 transprob{3} = 'leftright';
|
wolffd@0
|
102 termprob{3} = 'rightstop';
|
wolffd@0
|
103 else
|
wolffd@0
|
104 % If we want to be able to run a base-level model backwards...
|
wolffd@0
|
105 startprob{3} = 'rnd';
|
wolffd@0
|
106 transprob{3} = 'rnd';
|
wolffd@0
|
107 termprob{3} = 'rnd';
|
wolffd@0
|
108 end
|
wolffd@0
|
109
|
wolffd@0
|
110
|
wolffd@0
|
111 % OBS LEVEl
|
wolffd@0
|
112
|
wolffd@0
|
113 if discrete_obs
|
wolffd@0
|
114 % Initialise observations of lowest level primitives in a way which we can interpret
|
wolffd@0
|
115 chars = ['L', 'l', 'U', 'u', 'R', 'r', 'D', 'd'];
|
wolffd@0
|
116 L=find(chars=='L'); l=find(chars=='l');
|
wolffd@0
|
117 U=find(chars=='U'); u=find(chars=='u');
|
wolffd@0
|
118 R=find(chars=='R'); r=find(chars=='r');
|
wolffd@0
|
119 D=find(chars=='D'); d=find(chars=='d');
|
wolffd@0
|
120 Osize = length(chars);
|
wolffd@0
|
121
|
wolffd@0
|
122 if true_params
|
wolffd@0
|
123 p = 1; % makes each state fully observed
|
wolffd@0
|
124 else
|
wolffd@0
|
125 p = 0.9;
|
wolffd@0
|
126 end
|
wolffd@0
|
127
|
wolffd@0
|
128 obsprob = (1-p)*ones([4 2 Osize]);
|
wolffd@0
|
129 % Q2 Q3 O
|
wolffd@0
|
130 obsprob(1, 1, L) = p;
|
wolffd@0
|
131 obsprob(1, 2, l) = p;
|
wolffd@0
|
132 obsprob(2, 1, U) = p;
|
wolffd@0
|
133 obsprob(2, 2, u) = p;
|
wolffd@0
|
134 obsprob(3, 1, R) = p;
|
wolffd@0
|
135 obsprob(3, 2, r) = p;
|
wolffd@0
|
136 obsprob(4, 1, D) = p;
|
wolffd@0
|
137 obsprob(4, 2, d) = p;
|
wolffd@0
|
138 obsprob = mk_stochastic(obsprob);
|
wolffd@0
|
139 Oargs = {'CPT', obsprob};
|
wolffd@0
|
140 else
|
wolffd@0
|
141 % Initialise means of lowest level primitives in a way which we can interpret
|
wolffd@0
|
142 % These means are little vectors in the east, south, west, north directions.
|
wolffd@0
|
143 % (left-right=east, up-down=south, right-left=west, down-up=north)
|
wolffd@0
|
144 Osize = 2;
|
wolffd@0
|
145 mu = zeros(2, Qsizes(2), Qsizes(3));
|
wolffd@0
|
146 scale = 3;
|
wolffd@0
|
147 if true_params
|
wolffd@0
|
148 noise = 0;
|
wolffd@0
|
149 else
|
wolffd@0
|
150 noise = 0.5*scale;
|
wolffd@0
|
151 end
|
wolffd@0
|
152 for q3=1:Qsizes(3)
|
wolffd@0
|
153 mu(:, 1, q3) = scale*[1;0] + noise*rand(2,1);
|
wolffd@0
|
154 end
|
wolffd@0
|
155 for q3=1:Qsizes(3)
|
wolffd@0
|
156 mu(:, 2, q3) = scale*[0;-1] + noise*rand(2,1);
|
wolffd@0
|
157 end
|
wolffd@0
|
158 for q3=1:Qsizes(3)
|
wolffd@0
|
159 mu(:, 3, q3) = scale*[-1;0] + noise*rand(2,1);
|
wolffd@0
|
160 end
|
wolffd@0
|
161 for q3=1:Qsizes(3)
|
wolffd@0
|
162 mu(:, 4, q3) = scale*[0;1] + noise*rand(2,1);
|
wolffd@0
|
163 end
|
wolffd@0
|
164 Sigma = repmat(reshape(scale*eye(2), [2 2 1 1 ]), [1 1 Qsizes(2) Qsizes(3)]);
|
wolffd@0
|
165 Oargs = {'mean', mu, 'cov', Sigma, 'cov_type', 'diag'};
|
wolffd@0
|
166 end
|
wolffd@0
|
167
|
wolffd@0
|
168 if discrete_obs
|
wolffd@0
|
169 selfprob = 0.5;
|
wolffd@0
|
170 else
|
wolffd@0
|
171 selfprob = 0.95;
|
wolffd@0
|
172 % If less than this, it won't look like a square
|
wolffd@0
|
173 % because it doesn't spend enough time in each state
|
wolffd@0
|
174 % Unfortunately, the variance on durations (lengths of each side)
|
wolffd@0
|
175 % is very large
|
wolffd@0
|
176 end
|
wolffd@0
|
177 bnet = mk_hhmm('Qsizes', Qsizes, 'Osize', Osize', 'discrete_obs', discrete_obs, ...
|
wolffd@0
|
178 'Oargs', Oargs, 'Ops', Qnodes(2:3), 'selfprob', selfprob, ...
|
wolffd@0
|
179 'startprob', startprob, 'transprob', transprob, 'termprob', termprob);
|
wolffd@0
|
180
|