annotate toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/skf_data_assoc_gmux.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % We consider a switching Kalman filter of the kind studied
wolffd@0 2 % by Zoubin Ghahramani, i.e., where the switch node determines
wolffd@0 3 % which of the hidden chains we get to observe (data association).
wolffd@0 4 % e.g., for n=2 chains
wolffd@0 5 %
wolffd@0 6 % X1 -> X1
wolffd@0 7 % | X2 -> X2
wolffd@0 8 % \ |
wolffd@0 9 % v
wolffd@0 10 % Y
wolffd@0 11 % ^
wolffd@0 12 % |
wolffd@0 13 % S
wolffd@0 14 %
wolffd@0 15 % Y is a gmux (multiplexer) node, where S switches in one of the parents.
wolffd@0 16 % We differ from Zoubin by not connecting the S nodes over time (which
wolffd@0 17 % doesn't make sense for data association).
wolffd@0 18 % Indeed, we assume the S nodes are always observed.
wolffd@0 19 %
wolffd@0 20 %
wolffd@0 21 % We will track 2 objects (points) moving in the plane, as in BNT/Kalman/tracking_demo.
wolffd@0 22 % We will alternate between observing them.
wolffd@0 23
wolffd@0 24 nobj = 2;
wolffd@0 25 N = nobj+2;
wolffd@0 26 Xs = 1:nobj;
wolffd@0 27 S = nobj+1;
wolffd@0 28 Y = nobj+2;
wolffd@0 29
wolffd@0 30 intra = zeros(N,N);
wolffd@0 31 inter = zeros(N,N);
wolffd@0 32 intra([Xs S], Y) =1;
wolffd@0 33 for i=1:nobj
wolffd@0 34 inter(Xs(i), Xs(i))=1;
wolffd@0 35 end
wolffd@0 36
wolffd@0 37 Xsz = 4; % state space = (x y xdot ydot)
wolffd@0 38 Ysz = 2;
wolffd@0 39 ns = zeros(1,N);
wolffd@0 40 ns(Xs) = Xsz;
wolffd@0 41 ns(Y) = Ysz;
wolffd@0 42 ns(S) = n;
wolffd@0 43
wolffd@0 44 bnet = mk_dbn(intra, inter, ns, 'discrete', S, 'observed', [S Y]);
wolffd@0 45
wolffd@0 46 % For each object, we have
wolffd@0 47 % X(t+1) = F X(t) + noise(Q)
wolffd@0 48 % Y(t) = H X(t) + noise(R)
wolffd@0 49 F = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1];
wolffd@0 50 H = [1 0 0 0; 0 1 0 0];
wolffd@0 51 Q = 1e-3*eye(Xsz);
wolffd@0 52 %R = 1e-3*eye(Ysz);
wolffd@0 53 R = eye(Ysz);
wolffd@0 54
wolffd@0 55 % We initialise object 1 moving to the right, and object 2 moving to the left
wolffd@0 56 % (Here, we assume nobj=2)
wolffd@0 57 init_state{1} = [10 10 1 0]';
wolffd@0 58 init_state{2} = [10 -10 -1 0]';
wolffd@0 59
wolffd@0 60 for i=1:nobj
wolffd@0 61 bnet.CPD{Xs(i)} = gaussian_CPD(bnet, Xs(i), 'mean', init_state{i}, 'cov', 1e-4*eye(Xsz));
wolffd@0 62 end
wolffd@0 63 bnet.CPD{S} = root_CPD(bnet, S); % always observed
wolffd@0 64 bnet.CPD{Y} = gmux_CPD(bnet, Y, 'cov', repmat(R, [1 1 nobj]), 'weights', repmat(H, [1 1 nobj]));
wolffd@0 65 % slice 2
wolffd@0 66 eclass = bnet.equiv_class;
wolffd@0 67 for i=1:nobj
wolffd@0 68 bnet.CPD{eclass(Xs(i), 2)} = gaussian_CPD(bnet, Xs(i)+N, 'mean', zeros(Xsz,1), 'cov', Q, 'weights', F);
wolffd@0 69 end
wolffd@0 70
wolffd@0 71 % Observe objects at random
wolffd@0 72 T = 10;
wolffd@0 73 evidence = cell(N, T);
wolffd@0 74 data_assoc = sample_discrete(normalise(ones(1,nobj)), 1, T);
wolffd@0 75 evidence(S,:) = num2cell(data_assoc);
wolffd@0 76 evidence = sample_dbn(bnet, 'evidence', evidence);
wolffd@0 77
wolffd@0 78 % plot the data
wolffd@0 79 true_state = cell(1,nobj);
wolffd@0 80 for i=1:nobj
wolffd@0 81 true_state{i} = cell2num(evidence(Xs(i), :)); % true_state{i}(:,t) = [x y xdot ydot]'
wolffd@0 82 end
wolffd@0 83 obs_pos = cell2num(evidence(Y,:));
wolffd@0 84 figure(1)
wolffd@0 85 clf
wolffd@0 86 hold on
wolffd@0 87 styles = {'rx', 'go', 'b+', 'k*'};
wolffd@0 88 for i=1:nobj
wolffd@0 89 plot(true_state{i}(1,:), true_state{i}(2,:), styles{i});
wolffd@0 90 end
wolffd@0 91 for t=1:T
wolffd@0 92 text(obs_pos(1,t), obs_pos(2,t), sprintf('%d', t));
wolffd@0 93 end
wolffd@0 94 hold off
wolffd@0 95 relax_axes(0.1)
wolffd@0 96
wolffd@0 97
wolffd@0 98 % Inference
wolffd@0 99 ev = cell(N,T);
wolffd@0 100 ev(bnet.observed,:) = evidence(bnet.observed, :);
wolffd@0 101
wolffd@0 102 engines = {};
wolffd@0 103 engines{end+1} = jtree_dbn_inf_engine(bnet);
wolffd@0 104 %engines{end+1} = scg_unrolled_dbn_inf_engine(bnet, T);
wolffd@0 105 engines{end+1} = pearl_unrolled_dbn_inf_engine(bnet);
wolffd@0 106 E = length(engines);
wolffd@0 107
wolffd@0 108 inferred_state = cell(nobj,E); % inferred_state{i,e}(:,t)
wolffd@0 109 for e=1:E
wolffd@0 110 engines{e} = enter_evidence(engines{e}, ev);
wolffd@0 111 for i=1:nobj
wolffd@0 112 inferred_state{i,e} = zeros(4, T);
wolffd@0 113 for t=1:T
wolffd@0 114 m = marginal_nodes(engines{e}, Xs(i), t);
wolffd@0 115 inferred_state{i,e}(:,t) = m.mu;
wolffd@0 116 end
wolffd@0 117 end
wolffd@0 118 end
wolffd@0 119 inferred_state{1,1}
wolffd@0 120 inferred_state{1,2}
wolffd@0 121
wolffd@0 122 % Plot results
wolffd@0 123 figure(2)
wolffd@0 124 clf
wolffd@0 125 hold on
wolffd@0 126 styles = {'rx', 'go', 'b+', 'k*'};
wolffd@0 127 nstyles = length(styles);
wolffd@0 128 c = 1;
wolffd@0 129 for e=1:E
wolffd@0 130 for i=1:nobj
wolffd@0 131 plot(inferred_state{i,e}(1,:), inferred_state{i,e}(2,:), styles{mod(c-1,nstyles)+1});
wolffd@0 132 c = c + 1;
wolffd@0 133 end
wolffd@0 134 end
wolffd@0 135 for t=1:T
wolffd@0 136 text(obs_pos(1,t), obs_pos(2,t), sprintf('%d', t));
wolffd@0 137 end
wolffd@0 138 hold off
wolffd@0 139 relax_axes(0.1)