comparison toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/skf_data_assoc_gmux.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % We consider a switching Kalman filter of the kind studied
2 % by Zoubin Ghahramani, i.e., where the switch node determines
3 % which of the hidden chains we get to observe (data association).
4 % e.g., for n=2 chains
5 %
6 % X1 -> X1
7 % | X2 -> X2
8 % \ |
9 % v
10 % Y
11 % ^
12 % |
13 % S
14 %
15 % Y is a gmux (multiplexer) node, where S switches in one of the parents.
16 % We differ from Zoubin by not connecting the S nodes over time (which
17 % doesn't make sense for data association).
18 % Indeed, we assume the S nodes are always observed.
19 %
20 %
21 % We will track 2 objects (points) moving in the plane, as in BNT/Kalman/tracking_demo.
22 % We will alternate between observing them.
23
24 nobj = 2;
25 N = nobj+2;
26 Xs = 1:nobj;
27 S = nobj+1;
28 Y = nobj+2;
29
30 intra = zeros(N,N);
31 inter = zeros(N,N);
32 intra([Xs S], Y) =1;
33 for i=1:nobj
34 inter(Xs(i), Xs(i))=1;
35 end
36
37 Xsz = 4; % state space = (x y xdot ydot)
38 Ysz = 2;
39 ns = zeros(1,N);
40 ns(Xs) = Xsz;
41 ns(Y) = Ysz;
42 ns(S) = n;
43
44 bnet = mk_dbn(intra, inter, ns, 'discrete', S, 'observed', [S Y]);
45
46 % For each object, we have
47 % X(t+1) = F X(t) + noise(Q)
48 % Y(t) = H X(t) + noise(R)
49 F = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1];
50 H = [1 0 0 0; 0 1 0 0];
51 Q = 1e-3*eye(Xsz);
52 %R = 1e-3*eye(Ysz);
53 R = eye(Ysz);
54
55 % We initialise object 1 moving to the right, and object 2 moving to the left
56 % (Here, we assume nobj=2)
57 init_state{1} = [10 10 1 0]';
58 init_state{2} = [10 -10 -1 0]';
59
60 for i=1:nobj
61 bnet.CPD{Xs(i)} = gaussian_CPD(bnet, Xs(i), 'mean', init_state{i}, 'cov', 1e-4*eye(Xsz));
62 end
63 bnet.CPD{S} = root_CPD(bnet, S); % always observed
64 bnet.CPD{Y} = gmux_CPD(bnet, Y, 'cov', repmat(R, [1 1 nobj]), 'weights', repmat(H, [1 1 nobj]));
65 % slice 2
66 eclass = bnet.equiv_class;
67 for i=1:nobj
68 bnet.CPD{eclass(Xs(i), 2)} = gaussian_CPD(bnet, Xs(i)+N, 'mean', zeros(Xsz,1), 'cov', Q, 'weights', F);
69 end
70
71 % Observe objects at random
72 T = 10;
73 evidence = cell(N, T);
74 data_assoc = sample_discrete(normalise(ones(1,nobj)), 1, T);
75 evidence(S,:) = num2cell(data_assoc);
76 evidence = sample_dbn(bnet, 'evidence', evidence);
77
78 % plot the data
79 true_state = cell(1,nobj);
80 for i=1:nobj
81 true_state{i} = cell2num(evidence(Xs(i), :)); % true_state{i}(:,t) = [x y xdot ydot]'
82 end
83 obs_pos = cell2num(evidence(Y,:));
84 figure(1)
85 clf
86 hold on
87 styles = {'rx', 'go', 'b+', 'k*'};
88 for i=1:nobj
89 plot(true_state{i}(1,:), true_state{i}(2,:), styles{i});
90 end
91 for t=1:T
92 text(obs_pos(1,t), obs_pos(2,t), sprintf('%d', t));
93 end
94 hold off
95 relax_axes(0.1)
96
97
98 % Inference
99 ev = cell(N,T);
100 ev(bnet.observed,:) = evidence(bnet.observed, :);
101
102 engines = {};
103 engines{end+1} = jtree_dbn_inf_engine(bnet);
104 %engines{end+1} = scg_unrolled_dbn_inf_engine(bnet, T);
105 engines{end+1} = pearl_unrolled_dbn_inf_engine(bnet);
106 E = length(engines);
107
108 inferred_state = cell(nobj,E); % inferred_state{i,e}(:,t)
109 for e=1:E
110 engines{e} = enter_evidence(engines{e}, ev);
111 for i=1:nobj
112 inferred_state{i,e} = zeros(4, T);
113 for t=1:T
114 m = marginal_nodes(engines{e}, Xs(i), t);
115 inferred_state{i,e}(:,t) = m.mu;
116 end
117 end
118 end
119 inferred_state{1,1}
120 inferred_state{1,2}
121
122 % Plot results
123 figure(2)
124 clf
125 hold on
126 styles = {'rx', 'go', 'b+', 'k*'};
127 nstyles = length(styles);
128 c = 1;
129 for e=1:E
130 for i=1:nobj
131 plot(inferred_state{i,e}(1,:), inferred_state{i,e}(2,:), styles{mod(c-1,nstyles)+1});
132 c = c + 1;
133 end
134 end
135 for t=1:T
136 text(obs_pos(1,t), obs_pos(2,t), sprintf('%d', t));
137 end
138 hold off
139 relax_axes(0.1)