comparison src/BTrack.cpp @ 91:a88d887bd281

Code style update to BTrack class
author Adam Stark <adamstark.uk@gmail.com>
date Wed, 11 May 2016 00:06:52 +0100
parents b6fc77f471bb
children 4aa362058011
comparison
equal deleted inserted replaced
90:b6fc77f471bb 91:a88d887bd281
24 #include "BTrack.h" 24 #include "BTrack.h"
25 #include "samplerate.h" 25 #include "samplerate.h"
26 #include <iostream> 26 #include <iostream>
27 27
28 //======================================================================= 28 //=======================================================================
29 BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow) 29 BTrack::BTrack()
30 : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow)
30 { 31 {
31 initialise(512, 1024); 32 initialise(512, 1024);
32 } 33 }
33 34
34 //======================================================================= 35 //=======================================================================
35 BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow) 36 BTrack::BTrack (int hopSize_)
37 : odf(hopSize_, 2*hopSize_, ComplexSpectralDifferenceHWR, HanningWindow)
36 { 38 {
37 initialise(hopSize_, 2*hopSize_); 39 initialise(hopSize_, 2*hopSize_);
38 } 40 }
39 41
40 //======================================================================= 42 //=======================================================================
41 BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow) 43 BTrack::BTrack (int hopSize_, int frameSize_)
42 { 44 : odf (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow)
43 initialise(hopSize_, frameSize_); 45 {
46 initialise (hopSize_, frameSize_);
44 } 47 }
45 48
46 //======================================================================= 49 //=======================================================================
47 BTrack::~BTrack() 50 BTrack::~BTrack()
48 { 51 {
49 // destroy fft plan 52 // destroy fft plan
50 fftw_destroy_plan(acfForwardFFT); 53 fftw_destroy_plan (acfForwardFFT);
51 fftw_destroy_plan(acfBackwardFFT); 54 fftw_destroy_plan (acfBackwardFFT);
52 fftw_free(complexIn); 55 fftw_free (complexIn);
53 fftw_free(complexOut); 56 fftw_free (complexOut);
54 } 57 }
55 58
56 //======================================================================= 59 //=======================================================================
57 double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs) 60 double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int fs)
58 { 61 {
59 double hop = (double) hopSize; 62 double hop = (double) hopSize;
60 double samplingFrequency = (double) fs; 63 double samplingFrequency = (double) fs;
61 double frameNum = (double) frameNumber; 64 double frameNum = (double) frameNumber;
62 65
63 return ((hop / samplingFrequency) * frameNum); 66 return ((hop / samplingFrequency) * frameNum);
64 } 67 }
65 68
66 //======================================================================= 69 //=======================================================================
67 double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs) 70 double BTrack::getBeatTimeInSeconds (int frameNumber, int hopSize, int fs)
68 { 71 {
69 long frameNum = (long) frameNumber; 72 long frameNum = (long) frameNumber;
70 73
71 return getBeatTimeInSeconds(frameNum, hopSize, fs); 74 return getBeatTimeInSeconds (frameNum, hopSize, fs);
72 } 75 }
73 76
74 77
75 78
76 //======================================================================= 79 //=======================================================================
77 void BTrack::initialise(int hopSize_, int frameSize_) 80 void BTrack::initialise (int hopSize_, int frameSize_)
78 { 81 {
79 double rayparam = 43; 82 double rayparam = 43;
80 double pi = 3.14159265; 83 double pi = 3.14159265;
81 84
82 85
92 95
93 beatDueInFrame = false; 96 beatDueInFrame = false;
94 97
95 98
96 // create rayleigh weighting vector 99 // create rayleigh weighting vector
97 for (int n = 0;n < 128;n++) 100 for (int n = 0; n < 128; n++)
98 { 101 {
99 weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2))); 102 weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
100 } 103 }
101 104
102 // initialise prev_delta 105 // initialise prev_delta
103 for (int i = 0;i < 41;i++) 106 for (int i = 0; i < 41; i++)
104 { 107 {
105 prevDelta[i] = 1; 108 prevDelta[i] = 1;
106 } 109 }
107 110
108 double t_mu = 41/2; 111 double t_mu = 41/2;
132 135
133 136
134 // Set up FFT for calculating the auto-correlation function 137 // Set up FFT for calculating the auto-correlation function
135 FFTLengthForACFCalculation = 1024; 138 FFTLengthForACFCalculation = 1024;
136 139
137 complexIn = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data 140 complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
138 complexOut = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data 141 complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
139 142
140 acfForwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation 143 acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
141 acfBackwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation 144 acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
142 } 145 }
143 146
144 //======================================================================= 147 //=======================================================================
145 void BTrack::setHopSize(int hopSize_) 148 void BTrack::setHopSize (int hopSize_)
146 { 149 {
147 hopSize = hopSize_; 150 hopSize = hopSize_;
148 onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size 151 onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size
149 152
150 beatPeriod = round(60/((((double) hopSize)/44100)*tempo)); 153 beatPeriod = round(60/((((double) hopSize)/44100)*tempo));
151 154
152 // set size of onset detection function buffer 155 // set size of onset detection function buffer
153 onsetDF.resize(onsetDFBufferSize); 156 onsetDF.resize (onsetDFBufferSize);
154 157
155 // set size of cumulative score buffer 158 // set size of cumulative score buffer
156 cumulativeScore.resize(onsetDFBufferSize); 159 cumulativeScore.resize (onsetDFBufferSize);
157 160
158 // initialise df_buffer to zeros 161 // initialise df_buffer to zeros
159 for (int i = 0;i < onsetDFBufferSize;i++) 162 for (int i = 0; i < onsetDFBufferSize; i++)
160 { 163 {
161 onsetDF[i] = 0; 164 onsetDF[i] = 0;
162 cumulativeScore[i] = 0; 165 cumulativeScore[i] = 0;
163 166
164
165 if ((i % ((int) round(beatPeriod))) == 0) 167 if ((i % ((int) round(beatPeriod))) == 0)
166 { 168 {
167 onsetDF[i] = 1; 169 onsetDF[i] = 1;
168 } 170 }
169 } 171 }
170 } 172 }
171 173
172 //======================================================================= 174 //=======================================================================
173 void BTrack::updateHopAndFrameSize(int hopSize_,int frameSize_) 175 void BTrack::updateHopAndFrameSize (int hopSize_, int frameSize_)
174 { 176 {
175 // update the onset detection function object 177 // update the onset detection function object
176 odf.initialise(hopSize_, frameSize_); 178 odf.initialise (hopSize_, frameSize_);
177 179
178 // update the hop size being used by the beat tracker 180 // update the hop size being used by the beat tracker
179 setHopSize(hopSize_); 181 setHopSize (hopSize_);
180 } 182 }
181 183
182 //======================================================================= 184 //=======================================================================
183 bool BTrack::beatDueInCurrentFrame() 185 bool BTrack::beatDueInCurrentFrame()
184 { 186 {
202 { 204 {
203 return latestCumulativeScoreValue; 205 return latestCumulativeScoreValue;
204 } 206 }
205 207
206 //======================================================================= 208 //=======================================================================
207 void BTrack::processAudioFrame(double *frame) 209 void BTrack::processAudioFrame (double* frame)
208 { 210 {
209 // calculate the onset detection function sample for the frame 211 // calculate the onset detection function sample for the frame
210 double sample = odf.calculateOnsetDetectionFunctionSample(frame); 212 double sample = odf.calculateOnsetDetectionFunctionSample (frame);
211
212
213 213
214 // process the new onset detection function sample in the beat tracking algorithm 214 // process the new onset detection function sample in the beat tracking algorithm
215 processOnsetDetectionFunctionSample(sample); 215 processOnsetDetectionFunctionSample (sample);
216 } 216 }
217 217
218 //======================================================================= 218 //=======================================================================
219 void BTrack::processOnsetDetectionFunctionSample(double newSample) 219 void BTrack::processOnsetDetectionFunctionSample (double newSample)
220 { 220 {
221 // we need to ensure that the onset 221 // we need to ensure that the onset
222 // detection function sample is positive 222 // detection function sample is positive
223 newSample = fabs(newSample); 223 newSample = fabs (newSample);
224 224
225 // add a tiny constant to the sample to stop it from ever going 225 // add a tiny constant to the sample to stop it from ever going
226 // to zero. this is to avoid problems further down the line 226 // to zero. this is to avoid problems further down the line
227 newSample = newSample + 0.0001; 227 newSample = newSample + 0.0001;
228 228
229 m0--; 229 m0--;
230 beatCounter--; 230 beatCounter--;
231 beatDueInFrame = false; 231 beatDueInFrame = false;
232 232
233 // add new sample at the end 233 // add new sample at the end
234 onsetDF.addSampleToEnd(newSample); 234 onsetDF.addSampleToEnd (newSample);
235 235
236 // update cumulative score 236 // update cumulative score
237 updateCumulativeScore(newSample); 237 updateCumulativeScore (newSample);
238 238
239 // if we are halfway between beats 239 // if we are halfway between beats
240 if (m0 == 0) 240 if (m0 == 0)
241 { 241 {
242 predictBeat(); 242 predictBeat();
252 calculateTempo(); 252 calculateTempo();
253 } 253 }
254 } 254 }
255 255
256 //======================================================================= 256 //=======================================================================
257 void BTrack::setTempo(double tempo) 257 void BTrack::setTempo (double tempo)
258 { 258 {
259 259
260 /////////// TEMPO INDICATION RESET ////////////////// 260 /////////// TEMPO INDICATION RESET //////////////////
261 261
262 // firstly make sure tempo is between 80 and 160 bpm.. 262 // firstly make sure tempo is between 80 and 160 bpm..
319 // offbeat is half of new beat period away 319 // offbeat is half of new beat period away
320 m0 = (int) round(((double) new_bperiod)/2); 320 m0 = (int) round(((double) new_bperiod)/2);
321 } 321 }
322 322
323 //======================================================================= 323 //=======================================================================
324 void BTrack::fixTempo(double tempo) 324 void BTrack::fixTempo (double tempo)
325 { 325 {
326 // firstly make sure tempo is between 80 and 160 bpm.. 326 // firstly make sure tempo is between 80 and 160 bpm..
327 while (tempo > 160) 327 while (tempo > 160)
328 { 328 {
329 tempo = tempo/2; 329 tempo = tempo/2;
360 //======================================================================= 360 //=======================================================================
361 void BTrack::resampleOnsetDetectionFunction() 361 void BTrack::resampleOnsetDetectionFunction()
362 { 362 {
363 float output[512]; 363 float output[512];
364 364
365
366 float input[onsetDFBufferSize]; 365 float input[onsetDFBufferSize];
367 366
368 for (int i = 0;i < onsetDFBufferSize;i++) 367 for (int i = 0;i < onsetDFBufferSize;i++)
369 { 368 {
370 input[i] = (float) onsetDF[i]; 369 input[i] = (float) onsetDF[i];
396 395
397 //======================================================================= 396 //=======================================================================
398 void BTrack::calculateTempo() 397 void BTrack::calculateTempo()
399 { 398 {
400 // adaptive threshold on input 399 // adaptive threshold on input
401 adaptiveThreshold(resampledOnsetDF,512); 400 adaptiveThreshold (resampledOnsetDF,512);
402 401
403 // calculate auto-correlation function of detection function 402 // calculate auto-correlation function of detection function
404 calculateBalancedACF(resampledOnsetDF); 403 calculateBalancedACF (resampledOnsetDF);
405 404
406 // calculate output of comb filterbank 405 // calculate output of comb filterbank
407 calculateOutputOfCombFilterBank(); 406 calculateOutputOfCombFilterBank();
408 407
409
410 // adaptive threshold on rcf 408 // adaptive threshold on rcf
411 adaptiveThreshold(combFilterBankOutput,128); 409 adaptiveThreshold (combFilterBankOutput,128);
412 410
413 411
414 int t_index; 412 int t_index;
415 int t_index2; 413 int t_index2;
416 // calculate tempo observation vector from beat period observation vector 414 // calculate tempo observation vector from beat period observation vector
417 for (int i = 0;i < 41;i++) 415 for (int i = 0;i < 41;i++)
418 { 416 {
419 t_index = (int) round(tempoToLagFactor / ((double) ((2*i)+80))); 417 t_index = (int) round (tempoToLagFactor / ((double) ((2*i)+80)));
420 t_index2 = (int) round(tempoToLagFactor / ((double) ((4*i)+160))); 418 t_index2 = (int) round (tempoToLagFactor / ((double) ((4*i)+160)));
421 419
422 420
423 tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1]; 421 tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1];
424 } 422 }
425 423
440 for (int j=0;j < 41;j++) 438 for (int j=0;j < 41;j++)
441 { 439 {
442 maxval = -1; 440 maxval = -1;
443 for (int i = 0;i < 41;i++) 441 for (int i = 0;i < 41;i++)
444 { 442 {
445 curval = prevDelta[i]*tempoTransitionMatrix[i][j]; 443 curval = prevDelta[i] * tempoTransitionMatrix[i][j];
446 444
447 if (curval > maxval) 445 if (curval > maxval)
448 { 446 {
449 maxval = curval; 447 maxval = curval;
450 } 448 }
451 } 449 }
452 450
453 delta[j] = maxval*tempoObservationVector[j]; 451 delta[j] = maxval * tempoObservationVector[j];
454 } 452 }
455 453
456 454
457 normaliseArray(delta,41); 455 normaliseArray(delta,41);
458 456
468 } 466 }
469 467
470 prevDelta[j] = delta[j]; 468 prevDelta[j] = delta[j];
471 } 469 }
472 470
473 beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); 471 beatPeriod = round ((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize)));
474 472
475 if (beatPeriod > 0) 473 if (beatPeriod > 0)
476 { 474 {
477 estimatedTempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod); 475 estimatedTempo = 60.0/((((double) hopSize) / 44100.0) * beatPeriod);
478 } 476 }
479 } 477 }
480 478
481 //======================================================================= 479 //=======================================================================
482 void BTrack::adaptiveThreshold(double *x,int N) 480 void BTrack::adaptiveThreshold (double*x, int N)
483 { 481 {
484 int i = 0; 482 int i = 0;
485 int k,t = 0; 483 int k,t = 0;
486 double x_thresh[N]; 484 double x_thresh[N];
487 485
491 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays 489 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
492 490
493 // find threshold for first 't' samples, where a full average cannot be computed yet 491 // find threshold for first 't' samples, where a full average cannot be computed yet
494 for (i = 0;i <= t;i++) 492 for (i = 0;i <= t;i++)
495 { 493 {
496 k = std::min((i+p_pre),N); 494 k = std::min ((i+p_pre),N);
497 x_thresh[i] = calculateMeanOfArray(x,1,k); 495 x_thresh[i] = calculateMeanOfArray (x,1,k);
498 } 496 }
499 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] 497 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
500 for (i = t+1;i < N-p_post;i++) 498 for (i = t+1;i < N-p_post;i++)
501 { 499 {
502 x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post); 500 x_thresh[i] = calculateMeanOfArray (x,i-p_pre,i+p_post);
503 } 501 }
504 // for last few samples calculate threshold, again, not enough samples to do as above 502 // for last few samples calculate threshold, again, not enough samples to do as above
505 for (i = N-p_post;i < N;i++) 503 for (i = N-p_post;i < N;i++)
506 { 504 {
507 k = std::max((i-p_post),1); 505 k = std::max ((i-p_post),1);
508 x_thresh[i] = calculateMeanOfArray(x,k,N); 506 x_thresh[i] = calculateMeanOfArray (x,k,N);
509 } 507 }
510 508
511 // subtract the threshold from the detection function and check that it is not less than 0 509 // subtract the threshold from the detection function and check that it is not less than 0
512 for (i = 0;i < N;i++) 510 for (i = 0; i < N; i++)
513 { 511 {
514 x[i] = x[i] - x_thresh[i]; 512 x[i] = x[i] - x_thresh[i];
515 if (x[i] < 0) 513 if (x[i] < 0)
516 { 514 {
517 x[i] = 0; 515 x[i] = 0;
529 combFilterBankOutput[i] = 0; 527 combFilterBankOutput[i] = 0;
530 } 528 }
531 529
532 numelem = 4; 530 numelem = 4;
533 531
534 for (int i = 2;i <= 127;i++) // max beat period 532 for (int i = 2; i <= 127; i++) // max beat period
535 { 533 {
536 for (int a = 1;a <= numelem;a++) // number of comb elements 534 for (int a = 1; a <= numelem; a++) // number of comb elements
537 { 535 {
538 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements 536 for (int b = 1-a; b <= a-1; b++) // general state using normalisation of comb elements
539 { 537 {
540 combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row 538 combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row
541 } 539 }
542 } 540 }
543 } 541 }
544 } 542 }
545 543
546 //======================================================================= 544 //=======================================================================
547 void BTrack::calculateBalancedACF(double *onsetDetectionFunction) 545 void BTrack::calculateBalancedACF (double* onsetDetectionFunction)
548 { 546 {
549 int onsetDetectionFunctionLength = 512; 547 int onsetDetectionFunctionLength = 512;
550 548
551 // copy into complex array and zero pad 549 // copy into complex array and zero pad
552 for (int i = 0;i < FFTLengthForACFCalculation;i++) 550 for (int i = 0;i < FFTLengthForACFCalculation;i++)
562 complexIn[i][1] = 0.0; 560 complexIn[i][1] = 0.0;
563 } 561 }
564 } 562 }
565 563
566 // perform the fft 564 // perform the fft
567 fftw_execute(acfForwardFFT); 565 fftw_execute (acfForwardFFT);
568 566
569 // multiply by complex conjugate 567 // multiply by complex conjugate
570 for (int i = 0;i < FFTLengthForACFCalculation;i++) 568 for (int i = 0;i < FFTLengthForACFCalculation;i++)
571 { 569 {
572 complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1]; 570 complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1];
573 complexOut[i][1] = 0.0; 571 complexOut[i][1] = 0.0;
574 } 572 }
575 573
576 // perform the ifft 574 // perform the ifft
577 fftw_execute(acfBackwardFFT); 575 fftw_execute (acfBackwardFFT);
578 576
579 577
580 double lag = 512; 578 double lag = 512;
581 579
582 for (int i = 0;i < 512;i++) 580 for (int i = 0; i < 512; i++)
583 { 581 {
584 // calculate absolute value of result 582 // calculate absolute value of result
585 double absValue = sqrt(complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]); 583 double absValue = sqrt (complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]);
586 584
587 // divide by inverse lad to deal with scale bias towards small lags 585 // divide by inverse lad to deal with scale bias towards small lags
588 acf[i] = absValue / lag; 586 acf[i] = absValue / lag;
589 587
590 // this division by 1024 is technically unnecessary but it ensures the algorithm produces 588 // this division by 1024 is technically unnecessary but it ensures the algorithm produces
595 lag = lag - 1.; 593 lag = lag - 1.;
596 } 594 }
597 } 595 }
598 596
599 //======================================================================= 597 //=======================================================================
600 double BTrack::calculateMeanOfArray(double *array,int startIndex,int endIndex) 598 double BTrack::calculateMeanOfArray (double* array, int startIndex, int endIndex)
601 { 599 {
602 int i; 600 int i;
603 double sum = 0; 601 double sum = 0;
604 602
605 int length = endIndex - startIndex; 603 int length = endIndex - startIndex;
606 604
607 // find sum 605 // find sum
608 for (i = startIndex;i < endIndex;i++) 606 for (i = startIndex; i < endIndex; i++)
609 { 607 {
610 sum = sum + array[i]; 608 sum = sum + array[i];
611 } 609 }
612 610
613 if (length > 0) 611 if (length > 0)
619 return 0; 617 return 0;
620 } 618 }
621 } 619 }
622 620
623 //======================================================================= 621 //=======================================================================
624 void BTrack::normaliseArray(double *array,int N) 622 void BTrack::normaliseArray(double* array, int N)
625 { 623 {
626 double sum = 0; 624 double sum = 0;
627 625
628 for (int i = 0;i < N;i++) 626 for (int i = 0; i < N; i++)
629 { 627 {
630 if (array[i] > 0) 628 if (array[i] > 0)
631 { 629 {
632 sum = sum + array[i]; 630 sum = sum + array[i];
633 } 631 }
634 } 632 }
635 633
636 if (sum > 0) 634 if (sum > 0)
637 { 635 {
638 for (int i = 0;i < N;i++) 636 for (int i = 0; i < N; i++)
639 { 637 {
640 array[i] = array[i] / sum; 638 array[i] = array[i] / sum;
641 } 639 }
642 } 640 }
643 } 641 }
644 642
645 //======================================================================= 643 //=======================================================================
646 void BTrack::updateCumulativeScore(double odfSample) 644 void BTrack::updateCumulativeScore (double odfSample)
647 { 645 {
648 int start, end, winsize; 646 int start, end, winsize;
649 double max; 647 double max;
650 648
651 start = onsetDFBufferSize - round(2*beatPeriod); 649 start = onsetDFBufferSize - round (2 * beatPeriod);
652 end = onsetDFBufferSize - round(beatPeriod/2); 650 end = onsetDFBufferSize - round (beatPeriod / 2);
653 winsize = end-start+1; 651 winsize = end-start+1;
654 652
655 double w1[winsize]; 653 double w1[winsize];
656 double v = -2*beatPeriod; 654 double v = -2*beatPeriod;
657 double wcumscore; 655 double wcumscore;
658 656
659 657
660 // create window 658 // create window
661 for (int i = 0;i < winsize;i++) 659 for (int i = 0; i < winsize; i++)
662 { 660 {
663 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); 661 w1[i] = exp((-1*pow (tightness * log (-v / beatPeriod), 2)) / 2);
664 v = v+1; 662 v = v+1;
665 } 663 }
666 664
667 // calculate new cumulative score value 665 // calculate new cumulative score value
668 max = 0; 666 max = 0;
669 int n = 0; 667 int n = 0;
670 for (int i=start;i <= end;i++) 668 for (int i=start; i <= end; i++)
671 { 669 {
672 wcumscore = cumulativeScore[i]*w1[n]; 670 wcumscore = cumulativeScore[i]*w1[n];
673 671
674 if (wcumscore > max) 672 if (wcumscore > max)
675 { 673 {
679 } 677 }
680 678
681 679
682 latestCumulativeScoreValue = ((1-alpha)*odfSample) + (alpha*max); 680 latestCumulativeScoreValue = ((1-alpha)*odfSample) + (alpha*max);
683 681
684 cumulativeScore.addSampleToEnd(latestCumulativeScoreValue); 682 cumulativeScore.addSampleToEnd (latestCumulativeScoreValue);
685 } 683 }
686 684
687 //======================================================================= 685 //=======================================================================
688 void BTrack::predictBeat() 686 void BTrack::predictBeat()
689 { 687 {
696 futureCumulativeScore[i] = cumulativeScore[i]; 694 futureCumulativeScore[i] = cumulativeScore[i];
697 } 695 }
698 696
699 // create future window 697 // create future window
700 double v = 1; 698 double v = 1;
701 for (int i = 0;i < windowSize;i++) 699 for (int i = 0; i < windowSize; i++)
702 { 700 {
703 w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2))); 701 w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
704 v++; 702 v++;
705 } 703 }
706 704
721 719
722 // calculate future cumulative score 720 // calculate future cumulative score
723 double max; 721 double max;
724 int n; 722 int n;
725 double wcumscore; 723 double wcumscore;
726 for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++) 724 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++)
727 { 725 {
728 start = i - round(2*beatPeriod); 726 start = i - round (2*beatPeriod);
729 end = i - round(beatPeriod/2); 727 end = i - round (beatPeriod/2);
730 728
731 max = 0; 729 max = 0;
732 n = 0; 730 n = 0;
733 for (int k=start;k <= end;k++) 731 for (int k=start;k <= end;k++)
734 { 732 {
747 745
748 // predict beat 746 // predict beat
749 max = 0; 747 max = 0;
750 n = 0; 748 n = 0;
751 749
752 for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++) 750 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++)
753 { 751 {
754 wcumscore = futureCumulativeScore[i]*w2[n]; 752 wcumscore = futureCumulativeScore[i]*w2[n];
755 753
756 if (wcumscore > max) 754 if (wcumscore > max)
757 { 755 {
761 759
762 n++; 760 n++;
763 } 761 }
764 762
765 // set next prediction time 763 // set next prediction time
766 m0 = beatCounter+round(beatPeriod/2); 764 m0 = beatCounter + round (beatPeriod / 2);
767 765 }
768
769 }