Chris@1
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@1
|
2
|
Chris@1
|
3 /*
|
Chris@1
|
4 Vamp feature extraction plugin for the BeatRoot beat tracker.
|
Chris@1
|
5
|
Chris@1
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@1
|
7 This file copyright 2011 Simon Dixon, Chris Cannam and QMUL.
|
Chris@1
|
8
|
Chris@1
|
9 This program is free software; you can redistribute it and/or
|
Chris@1
|
10 modify it under the terms of the GNU General Public License as
|
Chris@1
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@1
|
12 License, or (at your option) any later version. See the file
|
Chris@1
|
13 COPYING included with this distribution for more information.
|
Chris@1
|
14 */
|
Chris@1
|
15
|
Chris@1
|
16 #ifndef _BEATROOT_PROCESSOR_H_
|
Chris@1
|
17 #define _BEATROOT_PROCESSOR_H_
|
Chris@1
|
18
|
Chris@2
|
19 #include <vector>
|
Chris@2
|
20
|
Chris@2
|
21 using std::vector;
|
Chris@2
|
22
|
Chris@1
|
23 class BeatRootProcessor
|
Chris@1
|
24 {
|
Chris@1
|
25 protected:
|
Chris@1
|
26 /** Sample rate of audio */
|
Chris@1
|
27 float sampleRate;
|
Chris@1
|
28
|
Chris@1
|
29 /** Spacing of audio frames (determines the amount of overlap or
|
Chris@1
|
30 * skip between frames). This value is expressed in
|
Chris@1
|
31 * seconds. (Default = 0.020s) */
|
Chris@1
|
32 double hopTime;
|
Chris@1
|
33
|
Chris@1
|
34 /** The approximate size of an FFT frame in seconds. (Default =
|
Chris@1
|
35 * 0.04644s). The value is adjusted so that <code>fftSize</code>
|
Chris@1
|
36 * is always power of 2. */
|
Chris@1
|
37 double fftTime;
|
Chris@1
|
38
|
Chris@1
|
39 /** Spacing of audio frames in samples (see <code>hopTime</code>) */
|
Chris@1
|
40 int hopSize;
|
Chris@1
|
41
|
Chris@1
|
42 /** The size of an FFT frame in samples (see <code>fftTime</code>) */
|
Chris@1
|
43 int fftSize;
|
Chris@1
|
44
|
Chris@1
|
45 /** The number of overlapping frames of audio data which have been read. */
|
Chris@1
|
46 int frameCount;
|
Chris@1
|
47
|
Chris@1
|
48 /** RMS amplitude of the current frame. */
|
Chris@1
|
49 double frameRMS;
|
Chris@1
|
50
|
Chris@1
|
51 /** Long term average frame energy (in frequency domain representation). */
|
Chris@1
|
52 double ltAverage;
|
Chris@1
|
53
|
Chris@1
|
54 /** Spectral flux onset detection function, indexed by frame. */
|
Chris@1
|
55 vector<int> spectralFlux;
|
Chris@1
|
56
|
Chris@1
|
57 /** A mapping function for mapping FFT bins to final frequency bins.
|
Chris@1
|
58 * The mapping is linear (1-1) until the resolution reaches 2 points per
|
Chris@1
|
59 * semitone, then logarithmic with a semitone resolution. e.g. for
|
Chris@1
|
60 * 44.1kHz sampling rate and fftSize of 2048 (46ms), bin spacing is
|
Chris@1
|
61 * 21.5Hz, which is mapped linearly for bins 0-34 (0 to 732Hz), and
|
Chris@1
|
62 * logarithmically for the remaining bins (midi notes 79 to 127, bins 35 to
|
Chris@1
|
63 * 83), where all energy above note 127 is mapped into the final bin. */
|
Chris@1
|
64 vector<int> freqMap;
|
Chris@1
|
65
|
Chris@1
|
66 /** The number of entries in <code>freqMap</code>. Note that the length of
|
Chris@1
|
67 * the array is greater, because its size is not known at creation time. */
|
Chris@1
|
68 int freqMapSize;
|
Chris@1
|
69
|
Chris@1
|
70 /** The magnitude spectrum of the most recent frame. Used for
|
Chris@1
|
71 * calculating the spectral flux. */
|
Chris@1
|
72 vector<double> prevFrame;
|
Chris@1
|
73
|
Chris@1
|
74 /** The magnitude spectrum of the current frame. */
|
Chris@1
|
75 vector<double> newFrame;
|
Chris@1
|
76
|
Chris@1
|
77 /** The magnitude spectra of all frames, used for plotting the spectrogram. */
|
Chris@1
|
78 vector<vector<double> > frames; //!!! do we need this? much cheaper to lose it if we don't
|
Chris@1
|
79
|
Chris@1
|
80 /** The RMS energy of all frames. */
|
Chris@1
|
81 vector<double> energy; //!!! unused in beat tracking?
|
Chris@1
|
82
|
Chris@1
|
83 /** The estimated onset times from peak-picking the onset
|
Chris@1
|
84 * detection function(s). */
|
Chris@1
|
85 vector<double> onsets;
|
Chris@1
|
86
|
Chris@1
|
87 /** The estimated onset times and their saliences. */
|
Chris@1
|
88 //!!!EventList onsetList;
|
Chris@1
|
89 vector<double> onsetList; //!!! corresponding to keyDown member of events in list
|
Chris@1
|
90
|
Chris@1
|
91 /** Total number of audio frames if known, or -1 for live or compressed input. */
|
Chris@1
|
92 int totalFrames;
|
Chris@1
|
93
|
Chris@1
|
94 /** Flag for enabling or disabling debugging output */
|
Chris@2
|
95 static bool debug;
|
Chris@1
|
96
|
Chris@1
|
97 /** Flag for suppressing all standard output messages except results. */
|
Chris@2
|
98 static bool silent;
|
Chris@1
|
99
|
Chris@1
|
100 /** RMS frame energy below this value results in the frame being
|
Chris@1
|
101 * set to zero, so that normalisation does not have undesired
|
Chris@1
|
102 * side-effects. */
|
Chris@2
|
103 static double silenceThreshold; //!!!??? energy of what? should not be static?
|
Chris@1
|
104
|
Chris@1
|
105 /** For dynamic range compression, this value is added to the log
|
Chris@1
|
106 * magnitude in each frequency bin and any remaining negative
|
Chris@1
|
107 * values are then set to zero.
|
Chris@1
|
108 */
|
Chris@2
|
109 static double rangeThreshold; //!!! sim
|
Chris@1
|
110
|
Chris@1
|
111 /** Determines method of normalisation. Values can be:<ul>
|
Chris@1
|
112 * <li>0: no normalisation</li>
|
Chris@1
|
113 * <li>1: normalisation by current frame energy</li>
|
Chris@1
|
114 * <li>2: normalisation by exponential average of frame energy</li>
|
Chris@1
|
115 * </ul>
|
Chris@1
|
116 */
|
Chris@2
|
117 static int normaliseMode;
|
Chris@1
|
118
|
Chris@1
|
119 /** Ratio between rate of sampling the signal energy (for the
|
Chris@1
|
120 * amplitude envelope) and the hop size */
|
Chris@2
|
121 static int energyOversampleFactor; //!!! not used?
|
Chris@1
|
122
|
Chris@1
|
123 public:
|
Chris@1
|
124
|
Chris@1
|
125 /** Constructor: note that streams are not opened until the input
|
Chris@1
|
126 * file is set (see <code>setInputFile()</code>). */
|
Chris@2
|
127 BeatRootProcessor() {
|
Chris@1
|
128 cbIndex = 0;
|
Chris@1
|
129 frameRMS = 0;
|
Chris@1
|
130 ltAverage = 0;
|
Chris@1
|
131 frameCount = 0;
|
Chris@1
|
132 hopSize = 0;
|
Chris@1
|
133 fftSize = 0;
|
Chris@1
|
134 hopTime = 0.010; // DEFAULT, overridden with -h
|
Chris@1
|
135 fftTime = 0.04644; // DEFAULT, overridden with -f
|
Chris@1
|
136 } // constructor
|
Chris@1
|
137
|
Chris@2
|
138 protected:
|
Chris@1
|
139 /** Allocates memory for arrays, based on parameter settings */
|
Chris@2
|
140 void init() {
|
Chris@1
|
141 hopSize = (int) Math.round(sampleRate * hopTime);
|
Chris@1
|
142 fftSize = (int) Math.round(Math.pow(2,
|
Chris@1
|
143 Math.round( Math.log(fftTime * sampleRate) / Math.log(2))));
|
Chris@1
|
144 makeFreqMap(fftSize, sampleRate);
|
Chris@1
|
145 int buffSize = hopSize * channels * 2;
|
Chris@1
|
146 if ((inputBuffer == null) || (inputBuffer.length != buffSize))
|
Chris@1
|
147 inputBuffer = new byte[buffSize];
|
Chris@1
|
148 if ((circBuffer == null) || (circBuffer.length != fftSize)) {
|
Chris@1
|
149 circBuffer = new double[fftSize];
|
Chris@1
|
150 reBuffer = new double[fftSize];
|
Chris@1
|
151 imBuffer = new double[fftSize];
|
Chris@1
|
152 prevPhase = new double[fftSize];
|
Chris@1
|
153 prevPrevPhase = new double[fftSize];
|
Chris@1
|
154 prevFrame = new double[fftSize];
|
Chris@1
|
155 window = FFT.makeWindow(FFT.HAMMING, fftSize, fftSize);
|
Chris@1
|
156 for (int i=0; i < fftSize; i++)
|
Chris@1
|
157 window[i] *= Math.sqrt(fftSize);
|
Chris@1
|
158 }
|
Chris@1
|
159 if (pcmInputStream == rawInputStream)
|
Chris@1
|
160 totalFrames = (int)(pcmInputStream.getFrameLength() / hopSize);
|
Chris@1
|
161 else
|
Chris@1
|
162 totalFrames = (int) (MAX_LENGTH / hopTime);
|
Chris@1
|
163 if ((newFrame == null) || (newFrame.length != freqMapSize)) {
|
Chris@1
|
164 newFrame = new double[freqMapSize];
|
Chris@1
|
165 frames = new double[totalFrames][freqMapSize];
|
Chris@1
|
166 } else if (frames.length != totalFrames)
|
Chris@1
|
167 frames = new double[totalFrames][freqMapSize];
|
Chris@1
|
168 energy = new double[totalFrames*energyOversampleFactor];
|
Chris@1
|
169 phaseDeviation = new double[totalFrames];
|
Chris@1
|
170 spectralFlux = new double[totalFrames];
|
Chris@1
|
171 frameCount = 0;
|
Chris@1
|
172 cbIndex = 0;
|
Chris@1
|
173 frameRMS = 0;
|
Chris@1
|
174 ltAverage = 0;
|
Chris@1
|
175 } // init()
|
Chris@1
|
176
|
Chris@1
|
177 /** Closes the input stream(s) associated with this object. */
|
Chris@2
|
178 void closeStreams() {
|
Chris@1
|
179 if (pcmInputStream != null) {
|
Chris@1
|
180 try {
|
Chris@1
|
181 pcmInputStream.close();
|
Chris@1
|
182 if (pcmInputStream != rawInputStream)
|
Chris@1
|
183 rawInputStream.close();
|
Chris@1
|
184 if (audioOut != null) {
|
Chris@1
|
185 audioOut.drain();
|
Chris@1
|
186 audioOut.close();
|
Chris@1
|
187 }
|
Chris@1
|
188 } catch (Exception e) {}
|
Chris@1
|
189 pcmInputStream = null;
|
Chris@1
|
190 audioOut = null;
|
Chris@1
|
191 }
|
Chris@1
|
192 } // closeStreams()
|
Chris@1
|
193
|
Chris@1
|
194 /** Creates a map of FFT frequency bins to comparison bins.
|
Chris@1
|
195 * Where the spacing of FFT bins is less than 0.5 semitones, the mapping is
|
Chris@1
|
196 * one to one. Where the spacing is greater than 0.5 semitones, the FFT
|
Chris@1
|
197 * energy is mapped into semitone-wide bins. No scaling is performed; that
|
Chris@1
|
198 * is the energy is summed into the comparison bins. See also
|
Chris@1
|
199 * processFrame()
|
Chris@1
|
200 */
|
Chris@2
|
201 void makeFreqMap(int fftSize, float sampleRate) {
|
Chris@1
|
202 freqMap = new int[fftSize/2+1];
|
Chris@1
|
203 double binWidth = sampleRate / fftSize;
|
Chris@1
|
204 int crossoverBin = (int)(2 / (Math.pow(2, 1/12.0) - 1));
|
Chris@1
|
205 int crossoverMidi = (int)Math.round(Math.log(crossoverBin*binWidth/440)/
|
Chris@1
|
206 Math.log(2) * 12 + 69);
|
Chris@1
|
207 // freq = 440 * Math.pow(2, (midi-69)/12.0) / binWidth;
|
Chris@1
|
208 int i = 0;
|
Chris@1
|
209 while (i <= crossoverBin)
|
Chris@1
|
210 freqMap[i++] = i;
|
Chris@1
|
211 while (i <= fftSize/2) {
|
Chris@1
|
212 double midi = Math.log(i*binWidth/440) / Math.log(2) * 12 + 69;
|
Chris@1
|
213 if (midi > 127)
|
Chris@1
|
214 midi = 127;
|
Chris@1
|
215 freqMap[i++] = crossoverBin + (int)Math.round(midi) - crossoverMidi;
|
Chris@1
|
216 }
|
Chris@1
|
217 freqMapSize = freqMap[i-1] + 1;
|
Chris@1
|
218 } // makeFreqMap()
|
Chris@1
|
219
|
Chris@1
|
220 /** Calculates the weighted phase deviation onset detection function.
|
Chris@1
|
221 * Not used.
|
Chris@1
|
222 * TODO: Test the change to WPD fn */
|
Chris@2
|
223 void weightedPhaseDeviation() {
|
Chris@1
|
224 if (frameCount < 2)
|
Chris@1
|
225 phaseDeviation[frameCount] = 0;
|
Chris@1
|
226 else {
|
Chris@1
|
227 for (int i = 0; i < fftSize; i++) {
|
Chris@1
|
228 double pd = imBuffer[i] - 2 * prevPhase[i] + prevPrevPhase[i];
|
Chris@1
|
229 double pd1 = Math.abs(Math.IEEEremainder(pd, 2 * Math.PI));
|
Chris@1
|
230 phaseDeviation[frameCount] += pd1 * reBuffer[i];
|
Chris@1
|
231 // System.err.printf("%7.3f %7.3f\n", pd/Math.PI, pd1/Math.PI);
|
Chris@1
|
232 }
|
Chris@1
|
233 }
|
Chris@1
|
234 phaseDeviation[frameCount] /= fftSize * Math.PI;
|
Chris@1
|
235 double[] tmp = prevPrevPhase;
|
Chris@1
|
236 prevPrevPhase = prevPhase;
|
Chris@1
|
237 prevPhase = imBuffer;
|
Chris@1
|
238 imBuffer = tmp;
|
Chris@1
|
239 } // weightedPhaseDeviation()
|
Chris@1
|
240
|
Chris@1
|
241 /** Reads a frame of input data, averages the channels to mono, scales
|
Chris@1
|
242 * to a maximum possible absolute value of 1, and stores the audio data
|
Chris@1
|
243 * in a circular input buffer.
|
Chris@1
|
244 * @return true if a frame (or part of a frame, if it is the final frame)
|
Chris@1
|
245 * is read. If a complete frame cannot be read, the InputStream is set
|
Chris@1
|
246 * to null.
|
Chris@1
|
247 */
|
Chris@2
|
248 bool getFrame() {
|
Chris@1
|
249 if (pcmInputStream == null)
|
Chris@1
|
250 return false;
|
Chris@1
|
251 try {
|
Chris@1
|
252 int bytesRead = (int) pcmInputStream.read(inputBuffer);
|
Chris@1
|
253 if ((audioOut != null) && (bytesRead > 0))
|
Chris@1
|
254 if (audioOut.write(inputBuffer, 0, bytesRead) != bytesRead)
|
Chris@1
|
255 System.err.println("Error writing to audio device");
|
Chris@1
|
256 if (bytesRead < inputBuffer.length) {
|
Chris@1
|
257 if (!silent)
|
Chris@1
|
258 System.err.println("End of input: " + audioFileName);
|
Chris@1
|
259 closeStreams();
|
Chris@1
|
260 return false;
|
Chris@1
|
261 }
|
Chris@1
|
262 } catch (IOException e) {
|
Chris@1
|
263 e.printStackTrace();
|
Chris@1
|
264 closeStreams();
|
Chris@1
|
265 return false;
|
Chris@1
|
266 }
|
Chris@1
|
267 frameRMS = 0;
|
Chris@1
|
268 double sample;
|
Chris@1
|
269 switch(channels) {
|
Chris@1
|
270 case 1:
|
Chris@1
|
271 for (int i = 0; i < inputBuffer.length; i += 2) {
|
Chris@1
|
272 sample = ((inputBuffer[i+1]<<8) |
|
Chris@1
|
273 (inputBuffer[i]&0xff)) / 32768.0;
|
Chris@1
|
274 frameRMS += sample * sample;
|
Chris@1
|
275 circBuffer[cbIndex++] = sample;
|
Chris@1
|
276 if (cbIndex == fftSize)
|
Chris@1
|
277 cbIndex = 0;
|
Chris@1
|
278 }
|
Chris@1
|
279 break;
|
Chris@1
|
280 case 2: // saves ~0.1% of RT (total input overhead ~0.4%) :)
|
Chris@1
|
281 for (int i = 0; i < inputBuffer.length; i += 4) {
|
Chris@1
|
282 sample = (((inputBuffer[i+1]<<8) | (inputBuffer[i]&0xff)) +
|
Chris@1
|
283 ((inputBuffer[i+3]<<8) | (inputBuffer[i+2]&0xff)))
|
Chris@1
|
284 / 65536.0;
|
Chris@1
|
285 frameRMS += sample * sample;
|
Chris@1
|
286 circBuffer[cbIndex++] = sample;
|
Chris@1
|
287 if (cbIndex == fftSize)
|
Chris@1
|
288 cbIndex = 0;
|
Chris@1
|
289 }
|
Chris@1
|
290 break;
|
Chris@1
|
291 default:
|
Chris@1
|
292 for (int i = 0; i < inputBuffer.length; ) {
|
Chris@1
|
293 sample = 0;
|
Chris@1
|
294 for (int j = 0; j < channels; j++, i+=2)
|
Chris@1
|
295 sample += (inputBuffer[i+1]<<8) | (inputBuffer[i]&0xff);
|
Chris@1
|
296 sample /= 32768.0 * channels;
|
Chris@1
|
297 frameRMS += sample * sample;
|
Chris@1
|
298 circBuffer[cbIndex++] = sample;
|
Chris@1
|
299 if (cbIndex == fftSize)
|
Chris@1
|
300 cbIndex = 0;
|
Chris@1
|
301 }
|
Chris@1
|
302 }
|
Chris@1
|
303 frameRMS = Math.sqrt(frameRMS / inputBuffer.length * 2 * channels);
|
Chris@1
|
304 return true;
|
Chris@1
|
305 } // getFrame()
|
Chris@1
|
306
|
Chris@1
|
307 /** Processes a frame of audio data by first computing the STFT with a
|
Chris@1
|
308 * Hamming window, then mapping the frequency bins into a part-linear
|
Chris@1
|
309 * part-logarithmic array, then computing the spectral flux
|
Chris@1
|
310 * then (optionally) normalising and calculating onsets.
|
Chris@1
|
311 */
|
Chris@2
|
312 void processFrame() {
|
Chris@1
|
313 if (getFrame()) {
|
Chris@1
|
314 for (int i = 0; i < fftSize; i++) {
|
Chris@1
|
315 reBuffer[i] = window[i] * circBuffer[cbIndex];
|
Chris@1
|
316 if (++cbIndex == fftSize)
|
Chris@1
|
317 cbIndex = 0;
|
Chris@1
|
318 }
|
Chris@1
|
319 Arrays.fill(imBuffer, 0);
|
Chris@1
|
320 FFT.magnitudePhaseFFT(reBuffer, imBuffer);
|
Chris@1
|
321 Arrays.fill(newFrame, 0);
|
Chris@1
|
322 double flux = 0;
|
Chris@1
|
323 for (int i = 0; i <= fftSize/2; i++) {
|
Chris@1
|
324 if (reBuffer[i] > prevFrame[i])
|
Chris@1
|
325 flux += reBuffer[i] - prevFrame[i];
|
Chris@1
|
326 newFrame[freqMap[i]] += reBuffer[i];
|
Chris@1
|
327 }
|
Chris@1
|
328 spectralFlux[frameCount] = flux;
|
Chris@1
|
329 for (int i = 0; i < freqMapSize; i++)
|
Chris@1
|
330 frames[frameCount][i] = newFrame[i];
|
Chris@1
|
331 int index = cbIndex - (fftSize - hopSize);
|
Chris@1
|
332 if (index < 0)
|
Chris@1
|
333 index += fftSize;
|
Chris@1
|
334 int sz = (fftSize - hopSize) / energyOversampleFactor;
|
Chris@1
|
335 for (int j = 0; j < energyOversampleFactor; j++) {
|
Chris@1
|
336 double newEnergy = 0;
|
Chris@1
|
337 for (int i = 0; i < sz; i++) {
|
Chris@1
|
338 newEnergy += circBuffer[index] * circBuffer[index];
|
Chris@1
|
339 if (++index == fftSize)
|
Chris@1
|
340 index = 0;
|
Chris@1
|
341 }
|
Chris@1
|
342 energy[frameCount * energyOversampleFactor + j] =
|
Chris@1
|
343 newEnergy / sz <= 1e-6? 0: Math.log(newEnergy / sz) + 13.816;
|
Chris@1
|
344 }
|
Chris@1
|
345 double decay = frameCount >= 200? 0.99:
|
Chris@1
|
346 (frameCount < 100? 0: (frameCount - 100) / 100.0);
|
Chris@1
|
347 if (ltAverage == 0)
|
Chris@1
|
348 ltAverage = frameRMS;
|
Chris@1
|
349 else
|
Chris@1
|
350 ltAverage = ltAverage * decay + frameRMS * (1.0 - decay);
|
Chris@1
|
351 if (frameRMS <= silenceThreshold)
|
Chris@1
|
352 for (int i = 0; i < freqMapSize; i++)
|
Chris@1
|
353 frames[frameCount][i] = 0;
|
Chris@1
|
354 else {
|
Chris@1
|
355 if (normaliseMode == 1)
|
Chris@1
|
356 for (int i = 0; i < freqMapSize; i++)
|
Chris@1
|
357 frames[frameCount][i] /= frameRMS;
|
Chris@1
|
358 else if (normaliseMode == 2)
|
Chris@1
|
359 for (int i = 0; i < freqMapSize; i++)
|
Chris@1
|
360 frames[frameCount][i] /= ltAverage;
|
Chris@1
|
361 for (int i = 0; i < freqMapSize; i++) {
|
Chris@1
|
362 frames[frameCount][i] = Math.log(frames[frameCount][i]) + rangeThreshold;
|
Chris@1
|
363 if (frames[frameCount][i] < 0)
|
Chris@1
|
364 frames[frameCount][i] = 0;
|
Chris@1
|
365 }
|
Chris@1
|
366 }
|
Chris@1
|
367 // weightedPhaseDeviation();
|
Chris@1
|
368 // if (debug)
|
Chris@1
|
369 // System.err.printf("PhaseDev: t=%7.3f phDev=%7.3f RMS=%7.3f\n",
|
Chris@1
|
370 // frameCount * hopTime,
|
Chris@1
|
371 // phaseDeviation[frameCount],
|
Chris@1
|
372 // frameRMS);
|
Chris@1
|
373 double[] tmp = prevFrame;
|
Chris@1
|
374 prevFrame = reBuffer;
|
Chris@1
|
375 reBuffer = tmp;
|
Chris@1
|
376 frameCount++;
|
Chris@1
|
377 if ((frameCount % 100) == 0) {
|
Chris@1
|
378 if (!silent) {
|
Chris@1
|
379 System.err.printf("Progress: %1d %5.3f %5.3f\n",
|
Chris@1
|
380 frameCount, frameRMS, ltAverage);
|
Chris@1
|
381 Profile.report();
|
Chris@1
|
382 }
|
Chris@1
|
383 if ((progressCallback != null) && (totalFrames > 0))
|
Chris@1
|
384 progressCallback.setFraction((double)frameCount/totalFrames);
|
Chris@1
|
385 }
|
Chris@1
|
386 }
|
Chris@1
|
387 } // processFrame()
|
Chris@1
|
388
|
Chris@1
|
389 /** Processes a complete file of audio data. */
|
Chris@2
|
390 void processFile() {
|
Chris@1
|
391 while (pcmInputStream != null) {
|
Chris@1
|
392 // Profile.start(0);
|
Chris@1
|
393 processFrame();
|
Chris@1
|
394 // Profile.log(0);
|
Chris@1
|
395 if (Thread.currentThread().isInterrupted()) {
|
Chris@1
|
396 System.err.println("info: INTERRUPTED in processFile()");
|
Chris@1
|
397 return;
|
Chris@1
|
398 }
|
Chris@1
|
399 }
|
Chris@1
|
400
|
Chris@1
|
401 // double[] x1 = new double[phaseDeviation.length];
|
Chris@1
|
402 // for (int i = 0; i < x1.length; i++) {
|
Chris@1
|
403 // x1[i] = i * hopTime;
|
Chris@1
|
404 // phaseDeviation[i] = (phaseDeviation[i] - 0.4) * 100;
|
Chris@1
|
405 // }
|
Chris@1
|
406 // double[] x2 = new double[energy.length];
|
Chris@1
|
407 // for (int i = 0; i < x2.length; i++)
|
Chris@1
|
408 // x2[i] = i * hopTime / energyOversampleFactor;
|
Chris@1
|
409 // // plot.clear();
|
Chris@1
|
410 // plot.addPlot(x1, phaseDeviation, Color.green, 7);
|
Chris@1
|
411 // plot.addPlot(x2, energy, Color.red, 7);
|
Chris@1
|
412 // plot.setTitle("Test phase deviation");
|
Chris@1
|
413 // plot.fitAxes();
|
Chris@1
|
414
|
Chris@1
|
415 // double[] slope = new double[energy.length];
|
Chris@1
|
416 // double hop = hopTime / energyOversampleFactor;
|
Chris@1
|
417 // Peaks.getSlope(energy, hop, 15, slope);
|
Chris@1
|
418 // LinkedList<Integer> peaks = Peaks.findPeaks(slope, (int)Math.round(0.06 / hop), 10);
|
Chris@1
|
419
|
Chris@1
|
420 double hop = hopTime;
|
Chris@1
|
421 Peaks.normalise(spectralFlux);
|
Chris@1
|
422 LinkedList<Integer> peaks = Peaks.findPeaks(spectralFlux, (int)Math.round(0.06 / hop), 0.35, 0.84, true);
|
Chris@1
|
423 onsets = new double[peaks.size()];
|
Chris@1
|
424 double[] y2 = new double[onsets.length];
|
Chris@1
|
425 Iterator<Integer> it = peaks.iterator();
|
Chris@1
|
426 onsetList = new EventList();
|
Chris@1
|
427 double minSalience = Peaks.min(spectralFlux);
|
Chris@1
|
428 for (int i = 0; i < onsets.length; i++) {
|
Chris@1
|
429 int index = it.next();
|
Chris@1
|
430 onsets[i] = index * hop;
|
Chris@1
|
431 y2[i] = spectralFlux[index];
|
Chris@1
|
432 Event e = BeatTrackDisplay.newBeat(onsets[i], 0);
|
Chris@1
|
433 // if (debug)
|
Chris@1
|
434 // System.err.printf("Onset: %8.3f %8.3f %8.3f\n",
|
Chris@1
|
435 // onsets[i], energy[index], slope[index]);
|
Chris@1
|
436 // e.salience = slope[index]; // or combination of energy + slope??
|
Chris@1
|
437 // Note that salience must be non-negative or the beat tracking system fails!
|
Chris@1
|
438 e.salience = spectralFlux[index] - minSalience;
|
Chris@1
|
439 onsetList.add(e);
|
Chris@1
|
440 }
|
Chris@1
|
441 if (progressCallback != null)
|
Chris@1
|
442 progressCallback.setFraction(1.0);
|
Chris@1
|
443 if (doOnsetPlot) {
|
Chris@1
|
444 double[] x1 = new double[spectralFlux.length];
|
Chris@1
|
445 for (int i = 0; i < x1.length; i++)
|
Chris@1
|
446 x1[i] = i * hopTime;
|
Chris@1
|
447 plot.addPlot(x1, spectralFlux, Color.red, 4);
|
Chris@1
|
448 plot.addPlot(onsets, y2, Color.green, 3);
|
Chris@1
|
449 plot.setTitle("Spectral flux and onsets");
|
Chris@1
|
450 plot.fitAxes();
|
Chris@1
|
451 }
|
Chris@1
|
452 if (debug) {
|
Chris@1
|
453 System.err.printf("Onsets: %d\nContinue? ", onsets.length);
|
Chris@1
|
454 readLine();
|
Chris@1
|
455 }
|
Chris@1
|
456 } // processFile()
|
Chris@1
|
457
|
Chris@1
|
458 /** Reads a text file containing a list of whitespace-separated feature values.
|
Chris@1
|
459 * Created for paper submitted to ICASSP'07.
|
Chris@1
|
460 * @param fileName File containing the data
|
Chris@1
|
461 * @return An array containing the feature values
|
Chris@1
|
462 */
|
Chris@2
|
463 static double[] getFeatures(String fileName) {
|
Chris@1
|
464 ArrayList<Double> l = new ArrayList<Double>();
|
Chris@1
|
465 try {
|
Chris@1
|
466 BufferedReader b = new BufferedReader(new FileReader(fileName));
|
Chris@1
|
467 while (true) {
|
Chris@1
|
468 String s = b.readLine();
|
Chris@1
|
469 if (s == null)
|
Chris@1
|
470 break;
|
Chris@1
|
471 int start = 0;
|
Chris@1
|
472 while (start < s.length()) {
|
Chris@1
|
473 int len = s.substring(start).indexOf(' ');
|
Chris@1
|
474 String t = null;
|
Chris@1
|
475 if (len < 0)
|
Chris@1
|
476 t = s.substring(start);
|
Chris@1
|
477 else if (len > 0) {
|
Chris@1
|
478 t = s.substring(start, start + len);
|
Chris@1
|
479 }
|
Chris@1
|
480 if (t != null)
|
Chris@1
|
481 try {
|
Chris@1
|
482 l.add(Double.parseDouble(t));
|
Chris@1
|
483 } catch (NumberFormatException e) {
|
Chris@1
|
484 System.err.println(e);
|
Chris@1
|
485 if (l.size() == 0)
|
Chris@1
|
486 l.add(new Double(0));
|
Chris@1
|
487 else
|
Chris@1
|
488 l.add(new Double(l.get(l.size()-1)));
|
Chris@1
|
489 }
|
Chris@1
|
490 start += len + 1;
|
Chris@1
|
491 if (len < 0)
|
Chris@1
|
492 break;
|
Chris@1
|
493 }
|
Chris@1
|
494 }
|
Chris@1
|
495 double[] features = new double[l.size()];
|
Chris@1
|
496 Iterator<Double> it = l.iterator();
|
Chris@1
|
497 for (int i = 0; it.hasNext(); i++)
|
Chris@1
|
498 features[i] = it.next().doubleValue();
|
Chris@1
|
499 return features;
|
Chris@1
|
500 } catch (FileNotFoundException e) {
|
Chris@1
|
501 e.printStackTrace();
|
Chris@1
|
502 return null;
|
Chris@1
|
503 } catch (IOException e) {
|
Chris@1
|
504 e.printStackTrace();
|
Chris@1
|
505 return null;
|
Chris@1
|
506 } catch (NumberFormatException e) {
|
Chris@1
|
507 e.printStackTrace();
|
Chris@1
|
508 return null;
|
Chris@1
|
509 }
|
Chris@1
|
510 } // getFeatures()
|
Chris@1
|
511
|
Chris@1
|
512 /** Reads a file of feature values, treated as an onset detection function,
|
Chris@1
|
513 * and finds peaks, which are stored in <code>onsetList</code> and <code>onsets</code>.
|
Chris@1
|
514 * @param fileName The file of feature values
|
Chris@1
|
515 * @param hopTime The spacing of feature values in time
|
Chris@1
|
516 */
|
Chris@2
|
517 void processFeatures(String fileName, double hopTime) {
|
Chris@1
|
518 double hop = hopTime;
|
Chris@1
|
519 double[] features = getFeatures(fileName);
|
Chris@1
|
520 Peaks.normalise(features);
|
Chris@1
|
521 LinkedList<Integer> peaks = Peaks.findPeaks(features, (int)Math.round(0.06 / hop), 0.35, 0.84, true);
|
Chris@1
|
522 onsets = new double[peaks.size()];
|
Chris@1
|
523 double[] y2 = new double[onsets.length];
|
Chris@1
|
524 Iterator<Integer> it = peaks.iterator();
|
Chris@1
|
525 onsetList = new EventList();
|
Chris@1
|
526 double minSalience = Peaks.min(features);
|
Chris@1
|
527 for (int i = 0; i < onsets.length; i++) {
|
Chris@1
|
528 int index = it.next();
|
Chris@1
|
529 onsets[i] = index * hop;
|
Chris@1
|
530 y2[i] = features[index];
|
Chris@1
|
531 Event e = BeatTrackDisplay.newBeat(onsets[i], 0);
|
Chris@1
|
532 e.salience = features[index] - minSalience;
|
Chris@1
|
533 onsetList.add(e);
|
Chris@1
|
534 }
|
Chris@1
|
535 } // processFeatures()
|
Chris@1
|
536
|
Chris@1
|
537 /** Copies output of audio processing to the display panel. */
|
Chris@2
|
538 void setDisplay(BeatTrackDisplay btd) {
|
Chris@1
|
539 int energy2[] = new int[totalFrames*energyOversampleFactor];
|
Chris@1
|
540 double time[] = new double[totalFrames*energyOversampleFactor];
|
Chris@1
|
541 for (int i = 0; i < totalFrames*energyOversampleFactor; i++) {
|
Chris@1
|
542 energy2[i] = (int) (energy[i] * 4 * energyOversampleFactor);
|
Chris@1
|
543 time[i] = i * hopTime / energyOversampleFactor;
|
Chris@1
|
544 }
|
Chris@1
|
545 btd.setMagnitudes(energy2);
|
Chris@1
|
546 btd.setEnvTimes(time);
|
Chris@1
|
547 btd.setSpectro(frames, totalFrames, hopTime, 0);//fftTime/hopTime);
|
Chris@1
|
548 btd.setOnsets(onsets);
|
Chris@1
|
549 btd.setOnsetList(onsetList);
|
Chris@1
|
550 } // setDisplay()
|
Chris@1
|
551
|
Chris@1
|
552 } // class AudioProcessor
|
Chris@1
|
553
|
Chris@1
|
554
|
Chris@1
|
555 #endif
|