Chris@1: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@1: Chris@1: /* Chris@1: Vamp feature extraction plugin for the BeatRoot beat tracker. Chris@1: Chris@1: Centre for Digital Music, Queen Mary, University of London. Chris@1: This file copyright 2011 Simon Dixon, Chris Cannam and QMUL. Chris@1: Chris@1: This program is free software; you can redistribute it and/or Chris@1: modify it under the terms of the GNU General Public License as Chris@1: published by the Free Software Foundation; either version 2 of the Chris@1: License, or (at your option) any later version. See the file Chris@1: COPYING included with this distribution for more information. Chris@1: */ Chris@1: Chris@1: #ifndef _BEATROOT_PROCESSOR_H_ Chris@1: #define _BEATROOT_PROCESSOR_H_ Chris@1: Chris@2: #include Chris@2: Chris@2: using std::vector; Chris@2: Chris@1: class BeatRootProcessor Chris@1: { Chris@1: protected: Chris@1: /** Sample rate of audio */ Chris@1: float sampleRate; Chris@1: Chris@1: /** Spacing of audio frames (determines the amount of overlap or Chris@1: * skip between frames). This value is expressed in Chris@1: * seconds. (Default = 0.020s) */ Chris@1: double hopTime; Chris@1: Chris@1: /** The approximate size of an FFT frame in seconds. (Default = Chris@1: * 0.04644s). The value is adjusted so that fftSize Chris@1: * is always power of 2. */ Chris@1: double fftTime; Chris@1: Chris@1: /** Spacing of audio frames in samples (see hopTime) */ Chris@1: int hopSize; Chris@1: Chris@1: /** The size of an FFT frame in samples (see fftTime) */ Chris@1: int fftSize; Chris@1: Chris@1: /** The number of overlapping frames of audio data which have been read. */ Chris@1: int frameCount; Chris@1: Chris@1: /** RMS amplitude of the current frame. */ Chris@1: double frameRMS; Chris@1: Chris@1: /** Long term average frame energy (in frequency domain representation). */ Chris@1: double ltAverage; Chris@1: Chris@1: /** Spectral flux onset detection function, indexed by frame. */ Chris@1: vector spectralFlux; Chris@1: Chris@1: /** A mapping function for mapping FFT bins to final frequency bins. Chris@1: * The mapping is linear (1-1) until the resolution reaches 2 points per Chris@1: * semitone, then logarithmic with a semitone resolution. e.g. for Chris@1: * 44.1kHz sampling rate and fftSize of 2048 (46ms), bin spacing is Chris@1: * 21.5Hz, which is mapped linearly for bins 0-34 (0 to 732Hz), and Chris@1: * logarithmically for the remaining bins (midi notes 79 to 127, bins 35 to Chris@1: * 83), where all energy above note 127 is mapped into the final bin. */ Chris@1: vector freqMap; Chris@1: Chris@1: /** The number of entries in freqMap. Note that the length of Chris@1: * the array is greater, because its size is not known at creation time. */ Chris@1: int freqMapSize; Chris@1: Chris@1: /** The magnitude spectrum of the most recent frame. Used for Chris@1: * calculating the spectral flux. */ Chris@1: vector prevFrame; Chris@1: Chris@1: /** The magnitude spectrum of the current frame. */ Chris@1: vector newFrame; Chris@1: Chris@1: /** The magnitude spectra of all frames, used for plotting the spectrogram. */ Chris@1: vector > frames; //!!! do we need this? much cheaper to lose it if we don't Chris@1: Chris@1: /** The RMS energy of all frames. */ Chris@1: vector energy; //!!! unused in beat tracking? Chris@1: Chris@1: /** The estimated onset times from peak-picking the onset Chris@1: * detection function(s). */ Chris@1: vector onsets; Chris@1: Chris@1: /** The estimated onset times and their saliences. */ Chris@1: //!!!EventList onsetList; Chris@1: vector onsetList; //!!! corresponding to keyDown member of events in list Chris@1: Chris@1: /** Total number of audio frames if known, or -1 for live or compressed input. */ Chris@1: int totalFrames; Chris@1: Chris@1: /** Flag for enabling or disabling debugging output */ Chris@2: static bool debug; Chris@1: Chris@1: /** Flag for suppressing all standard output messages except results. */ Chris@2: static bool silent; Chris@1: Chris@1: /** RMS frame energy below this value results in the frame being Chris@1: * set to zero, so that normalisation does not have undesired Chris@1: * side-effects. */ Chris@2: static double silenceThreshold; //!!!??? energy of what? should not be static? Chris@1: Chris@1: /** For dynamic range compression, this value is added to the log Chris@1: * magnitude in each frequency bin and any remaining negative Chris@1: * values are then set to zero. Chris@1: */ Chris@2: static double rangeThreshold; //!!! sim Chris@1: Chris@1: /** Determines method of normalisation. Values can be:
    Chris@1: *
  • 0: no normalisation
  • Chris@1: *
  • 1: normalisation by current frame energy
  • Chris@1: *
  • 2: normalisation by exponential average of frame energy
  • Chris@1: *
Chris@1: */ Chris@2: static int normaliseMode; Chris@1: Chris@1: /** Ratio between rate of sampling the signal energy (for the Chris@1: * amplitude envelope) and the hop size */ Chris@2: static int energyOversampleFactor; //!!! not used? Chris@1: Chris@1: public: Chris@1: Chris@1: /** Constructor: note that streams are not opened until the input Chris@1: * file is set (see setInputFile()). */ Chris@2: BeatRootProcessor() { Chris@1: cbIndex = 0; Chris@1: frameRMS = 0; Chris@1: ltAverage = 0; Chris@1: frameCount = 0; Chris@1: hopSize = 0; Chris@1: fftSize = 0; Chris@1: hopTime = 0.010; // DEFAULT, overridden with -h Chris@1: fftTime = 0.04644; // DEFAULT, overridden with -f Chris@1: } // constructor Chris@1: Chris@2: protected: Chris@1: /** Allocates memory for arrays, based on parameter settings */ Chris@2: void init() { Chris@1: hopSize = (int) Math.round(sampleRate * hopTime); Chris@1: fftSize = (int) Math.round(Math.pow(2, Chris@1: Math.round( Math.log(fftTime * sampleRate) / Math.log(2)))); Chris@1: makeFreqMap(fftSize, sampleRate); Chris@1: int buffSize = hopSize * channels * 2; Chris@1: if ((inputBuffer == null) || (inputBuffer.length != buffSize)) Chris@1: inputBuffer = new byte[buffSize]; Chris@1: if ((circBuffer == null) || (circBuffer.length != fftSize)) { Chris@1: circBuffer = new double[fftSize]; Chris@1: reBuffer = new double[fftSize]; Chris@1: imBuffer = new double[fftSize]; Chris@1: prevPhase = new double[fftSize]; Chris@1: prevPrevPhase = new double[fftSize]; Chris@1: prevFrame = new double[fftSize]; Chris@1: window = FFT.makeWindow(FFT.HAMMING, fftSize, fftSize); Chris@1: for (int i=0; i < fftSize; i++) Chris@1: window[i] *= Math.sqrt(fftSize); Chris@1: } Chris@1: if (pcmInputStream == rawInputStream) Chris@1: totalFrames = (int)(pcmInputStream.getFrameLength() / hopSize); Chris@1: else Chris@1: totalFrames = (int) (MAX_LENGTH / hopTime); Chris@1: if ((newFrame == null) || (newFrame.length != freqMapSize)) { Chris@1: newFrame = new double[freqMapSize]; Chris@1: frames = new double[totalFrames][freqMapSize]; Chris@1: } else if (frames.length != totalFrames) Chris@1: frames = new double[totalFrames][freqMapSize]; Chris@1: energy = new double[totalFrames*energyOversampleFactor]; Chris@1: phaseDeviation = new double[totalFrames]; Chris@1: spectralFlux = new double[totalFrames]; Chris@1: frameCount = 0; Chris@1: cbIndex = 0; Chris@1: frameRMS = 0; Chris@1: ltAverage = 0; Chris@1: } // init() Chris@1: Chris@1: /** Closes the input stream(s) associated with this object. */ Chris@2: void closeStreams() { Chris@1: if (pcmInputStream != null) { Chris@1: try { Chris@1: pcmInputStream.close(); Chris@1: if (pcmInputStream != rawInputStream) Chris@1: rawInputStream.close(); Chris@1: if (audioOut != null) { Chris@1: audioOut.drain(); Chris@1: audioOut.close(); Chris@1: } Chris@1: } catch (Exception e) {} Chris@1: pcmInputStream = null; Chris@1: audioOut = null; Chris@1: } Chris@1: } // closeStreams() Chris@1: Chris@1: /** Creates a map of FFT frequency bins to comparison bins. Chris@1: * Where the spacing of FFT bins is less than 0.5 semitones, the mapping is Chris@1: * one to one. Where the spacing is greater than 0.5 semitones, the FFT Chris@1: * energy is mapped into semitone-wide bins. No scaling is performed; that Chris@1: * is the energy is summed into the comparison bins. See also Chris@1: * processFrame() Chris@1: */ Chris@2: void makeFreqMap(int fftSize, float sampleRate) { Chris@1: freqMap = new int[fftSize/2+1]; Chris@1: double binWidth = sampleRate / fftSize; Chris@1: int crossoverBin = (int)(2 / (Math.pow(2, 1/12.0) - 1)); Chris@1: int crossoverMidi = (int)Math.round(Math.log(crossoverBin*binWidth/440)/ Chris@1: Math.log(2) * 12 + 69); Chris@1: // freq = 440 * Math.pow(2, (midi-69)/12.0) / binWidth; Chris@1: int i = 0; Chris@1: while (i <= crossoverBin) Chris@1: freqMap[i++] = i; Chris@1: while (i <= fftSize/2) { Chris@1: double midi = Math.log(i*binWidth/440) / Math.log(2) * 12 + 69; Chris@1: if (midi > 127) Chris@1: midi = 127; Chris@1: freqMap[i++] = crossoverBin + (int)Math.round(midi) - crossoverMidi; Chris@1: } Chris@1: freqMapSize = freqMap[i-1] + 1; Chris@1: } // makeFreqMap() Chris@1: Chris@1: /** Calculates the weighted phase deviation onset detection function. Chris@1: * Not used. Chris@1: * TODO: Test the change to WPD fn */ Chris@2: void weightedPhaseDeviation() { Chris@1: if (frameCount < 2) Chris@1: phaseDeviation[frameCount] = 0; Chris@1: else { Chris@1: for (int i = 0; i < fftSize; i++) { Chris@1: double pd = imBuffer[i] - 2 * prevPhase[i] + prevPrevPhase[i]; Chris@1: double pd1 = Math.abs(Math.IEEEremainder(pd, 2 * Math.PI)); Chris@1: phaseDeviation[frameCount] += pd1 * reBuffer[i]; Chris@1: // System.err.printf("%7.3f %7.3f\n", pd/Math.PI, pd1/Math.PI); Chris@1: } Chris@1: } Chris@1: phaseDeviation[frameCount] /= fftSize * Math.PI; Chris@1: double[] tmp = prevPrevPhase; Chris@1: prevPrevPhase = prevPhase; Chris@1: prevPhase = imBuffer; Chris@1: imBuffer = tmp; Chris@1: } // weightedPhaseDeviation() Chris@1: Chris@1: /** Reads a frame of input data, averages the channels to mono, scales Chris@1: * to a maximum possible absolute value of 1, and stores the audio data Chris@1: * in a circular input buffer. Chris@1: * @return true if a frame (or part of a frame, if it is the final frame) Chris@1: * is read. If a complete frame cannot be read, the InputStream is set Chris@1: * to null. Chris@1: */ Chris@2: bool getFrame() { Chris@1: if (pcmInputStream == null) Chris@1: return false; Chris@1: try { Chris@1: int bytesRead = (int) pcmInputStream.read(inputBuffer); Chris@1: if ((audioOut != null) && (bytesRead > 0)) Chris@1: if (audioOut.write(inputBuffer, 0, bytesRead) != bytesRead) Chris@1: System.err.println("Error writing to audio device"); Chris@1: if (bytesRead < inputBuffer.length) { Chris@1: if (!silent) Chris@1: System.err.println("End of input: " + audioFileName); Chris@1: closeStreams(); Chris@1: return false; Chris@1: } Chris@1: } catch (IOException e) { Chris@1: e.printStackTrace(); Chris@1: closeStreams(); Chris@1: return false; Chris@1: } Chris@1: frameRMS = 0; Chris@1: double sample; Chris@1: switch(channels) { Chris@1: case 1: Chris@1: for (int i = 0; i < inputBuffer.length; i += 2) { Chris@1: sample = ((inputBuffer[i+1]<<8) | Chris@1: (inputBuffer[i]&0xff)) / 32768.0; Chris@1: frameRMS += sample * sample; Chris@1: circBuffer[cbIndex++] = sample; Chris@1: if (cbIndex == fftSize) Chris@1: cbIndex = 0; Chris@1: } Chris@1: break; Chris@1: case 2: // saves ~0.1% of RT (total input overhead ~0.4%) :) Chris@1: for (int i = 0; i < inputBuffer.length; i += 4) { Chris@1: sample = (((inputBuffer[i+1]<<8) | (inputBuffer[i]&0xff)) + Chris@1: ((inputBuffer[i+3]<<8) | (inputBuffer[i+2]&0xff))) Chris@1: / 65536.0; Chris@1: frameRMS += sample * sample; Chris@1: circBuffer[cbIndex++] = sample; Chris@1: if (cbIndex == fftSize) Chris@1: cbIndex = 0; Chris@1: } Chris@1: break; Chris@1: default: Chris@1: for (int i = 0; i < inputBuffer.length; ) { Chris@1: sample = 0; Chris@1: for (int j = 0; j < channels; j++, i+=2) Chris@1: sample += (inputBuffer[i+1]<<8) | (inputBuffer[i]&0xff); Chris@1: sample /= 32768.0 * channels; Chris@1: frameRMS += sample * sample; Chris@1: circBuffer[cbIndex++] = sample; Chris@1: if (cbIndex == fftSize) Chris@1: cbIndex = 0; Chris@1: } Chris@1: } Chris@1: frameRMS = Math.sqrt(frameRMS / inputBuffer.length * 2 * channels); Chris@1: return true; Chris@1: } // getFrame() Chris@1: Chris@1: /** Processes a frame of audio data by first computing the STFT with a Chris@1: * Hamming window, then mapping the frequency bins into a part-linear Chris@1: * part-logarithmic array, then computing the spectral flux Chris@1: * then (optionally) normalising and calculating onsets. Chris@1: */ Chris@2: void processFrame() { Chris@1: if (getFrame()) { Chris@1: for (int i = 0; i < fftSize; i++) { Chris@1: reBuffer[i] = window[i] * circBuffer[cbIndex]; Chris@1: if (++cbIndex == fftSize) Chris@1: cbIndex = 0; Chris@1: } Chris@1: Arrays.fill(imBuffer, 0); Chris@1: FFT.magnitudePhaseFFT(reBuffer, imBuffer); Chris@1: Arrays.fill(newFrame, 0); Chris@1: double flux = 0; Chris@1: for (int i = 0; i <= fftSize/2; i++) { Chris@1: if (reBuffer[i] > prevFrame[i]) Chris@1: flux += reBuffer[i] - prevFrame[i]; Chris@1: newFrame[freqMap[i]] += reBuffer[i]; Chris@1: } Chris@1: spectralFlux[frameCount] = flux; Chris@1: for (int i = 0; i < freqMapSize; i++) Chris@1: frames[frameCount][i] = newFrame[i]; Chris@1: int index = cbIndex - (fftSize - hopSize); Chris@1: if (index < 0) Chris@1: index += fftSize; Chris@1: int sz = (fftSize - hopSize) / energyOversampleFactor; Chris@1: for (int j = 0; j < energyOversampleFactor; j++) { Chris@1: double newEnergy = 0; Chris@1: for (int i = 0; i < sz; i++) { Chris@1: newEnergy += circBuffer[index] * circBuffer[index]; Chris@1: if (++index == fftSize) Chris@1: index = 0; Chris@1: } Chris@1: energy[frameCount * energyOversampleFactor + j] = Chris@1: newEnergy / sz <= 1e-6? 0: Math.log(newEnergy / sz) + 13.816; Chris@1: } Chris@1: double decay = frameCount >= 200? 0.99: Chris@1: (frameCount < 100? 0: (frameCount - 100) / 100.0); Chris@1: if (ltAverage == 0) Chris@1: ltAverage = frameRMS; Chris@1: else Chris@1: ltAverage = ltAverage * decay + frameRMS * (1.0 - decay); Chris@1: if (frameRMS <= silenceThreshold) Chris@1: for (int i = 0; i < freqMapSize; i++) Chris@1: frames[frameCount][i] = 0; Chris@1: else { Chris@1: if (normaliseMode == 1) Chris@1: for (int i = 0; i < freqMapSize; i++) Chris@1: frames[frameCount][i] /= frameRMS; Chris@1: else if (normaliseMode == 2) Chris@1: for (int i = 0; i < freqMapSize; i++) Chris@1: frames[frameCount][i] /= ltAverage; Chris@1: for (int i = 0; i < freqMapSize; i++) { Chris@1: frames[frameCount][i] = Math.log(frames[frameCount][i]) + rangeThreshold; Chris@1: if (frames[frameCount][i] < 0) Chris@1: frames[frameCount][i] = 0; Chris@1: } Chris@1: } Chris@1: // weightedPhaseDeviation(); Chris@1: // if (debug) Chris@1: // System.err.printf("PhaseDev: t=%7.3f phDev=%7.3f RMS=%7.3f\n", Chris@1: // frameCount * hopTime, Chris@1: // phaseDeviation[frameCount], Chris@1: // frameRMS); Chris@1: double[] tmp = prevFrame; Chris@1: prevFrame = reBuffer; Chris@1: reBuffer = tmp; Chris@1: frameCount++; Chris@1: if ((frameCount % 100) == 0) { Chris@1: if (!silent) { Chris@1: System.err.printf("Progress: %1d %5.3f %5.3f\n", Chris@1: frameCount, frameRMS, ltAverage); Chris@1: Profile.report(); Chris@1: } Chris@1: if ((progressCallback != null) && (totalFrames > 0)) Chris@1: progressCallback.setFraction((double)frameCount/totalFrames); Chris@1: } Chris@1: } Chris@1: } // processFrame() Chris@1: Chris@1: /** Processes a complete file of audio data. */ Chris@2: void processFile() { Chris@1: while (pcmInputStream != null) { Chris@1: // Profile.start(0); Chris@1: processFrame(); Chris@1: // Profile.log(0); Chris@1: if (Thread.currentThread().isInterrupted()) { Chris@1: System.err.println("info: INTERRUPTED in processFile()"); Chris@1: return; Chris@1: } Chris@1: } Chris@1: Chris@1: // double[] x1 = new double[phaseDeviation.length]; Chris@1: // for (int i = 0; i < x1.length; i++) { Chris@1: // x1[i] = i * hopTime; Chris@1: // phaseDeviation[i] = (phaseDeviation[i] - 0.4) * 100; Chris@1: // } Chris@1: // double[] x2 = new double[energy.length]; Chris@1: // for (int i = 0; i < x2.length; i++) Chris@1: // x2[i] = i * hopTime / energyOversampleFactor; Chris@1: // // plot.clear(); Chris@1: // plot.addPlot(x1, phaseDeviation, Color.green, 7); Chris@1: // plot.addPlot(x2, energy, Color.red, 7); Chris@1: // plot.setTitle("Test phase deviation"); Chris@1: // plot.fitAxes(); Chris@1: Chris@1: // double[] slope = new double[energy.length]; Chris@1: // double hop = hopTime / energyOversampleFactor; Chris@1: // Peaks.getSlope(energy, hop, 15, slope); Chris@1: // LinkedList peaks = Peaks.findPeaks(slope, (int)Math.round(0.06 / hop), 10); Chris@1: Chris@1: double hop = hopTime; Chris@1: Peaks.normalise(spectralFlux); Chris@1: LinkedList peaks = Peaks.findPeaks(spectralFlux, (int)Math.round(0.06 / hop), 0.35, 0.84, true); Chris@1: onsets = new double[peaks.size()]; Chris@1: double[] y2 = new double[onsets.length]; Chris@1: Iterator it = peaks.iterator(); Chris@1: onsetList = new EventList(); Chris@1: double minSalience = Peaks.min(spectralFlux); Chris@1: for (int i = 0; i < onsets.length; i++) { Chris@1: int index = it.next(); Chris@1: onsets[i] = index * hop; Chris@1: y2[i] = spectralFlux[index]; Chris@1: Event e = BeatTrackDisplay.newBeat(onsets[i], 0); Chris@1: // if (debug) Chris@1: // System.err.printf("Onset: %8.3f %8.3f %8.3f\n", Chris@1: // onsets[i], energy[index], slope[index]); Chris@1: // e.salience = slope[index]; // or combination of energy + slope?? Chris@1: // Note that salience must be non-negative or the beat tracking system fails! Chris@1: e.salience = spectralFlux[index] - minSalience; Chris@1: onsetList.add(e); Chris@1: } Chris@1: if (progressCallback != null) Chris@1: progressCallback.setFraction(1.0); Chris@1: if (doOnsetPlot) { Chris@1: double[] x1 = new double[spectralFlux.length]; Chris@1: for (int i = 0; i < x1.length; i++) Chris@1: x1[i] = i * hopTime; Chris@1: plot.addPlot(x1, spectralFlux, Color.red, 4); Chris@1: plot.addPlot(onsets, y2, Color.green, 3); Chris@1: plot.setTitle("Spectral flux and onsets"); Chris@1: plot.fitAxes(); Chris@1: } Chris@1: if (debug) { Chris@1: System.err.printf("Onsets: %d\nContinue? ", onsets.length); Chris@1: readLine(); Chris@1: } Chris@1: } // processFile() Chris@1: Chris@1: /** Reads a text file containing a list of whitespace-separated feature values. Chris@1: * Created for paper submitted to ICASSP'07. Chris@1: * @param fileName File containing the data Chris@1: * @return An array containing the feature values Chris@1: */ Chris@2: static double[] getFeatures(String fileName) { Chris@1: ArrayList l = new ArrayList(); Chris@1: try { Chris@1: BufferedReader b = new BufferedReader(new FileReader(fileName)); Chris@1: while (true) { Chris@1: String s = b.readLine(); Chris@1: if (s == null) Chris@1: break; Chris@1: int start = 0; Chris@1: while (start < s.length()) { Chris@1: int len = s.substring(start).indexOf(' '); Chris@1: String t = null; Chris@1: if (len < 0) Chris@1: t = s.substring(start); Chris@1: else if (len > 0) { Chris@1: t = s.substring(start, start + len); Chris@1: } Chris@1: if (t != null) Chris@1: try { Chris@1: l.add(Double.parseDouble(t)); Chris@1: } catch (NumberFormatException e) { Chris@1: System.err.println(e); Chris@1: if (l.size() == 0) Chris@1: l.add(new Double(0)); Chris@1: else Chris@1: l.add(new Double(l.get(l.size()-1))); Chris@1: } Chris@1: start += len + 1; Chris@1: if (len < 0) Chris@1: break; Chris@1: } Chris@1: } Chris@1: double[] features = new double[l.size()]; Chris@1: Iterator it = l.iterator(); Chris@1: for (int i = 0; it.hasNext(); i++) Chris@1: features[i] = it.next().doubleValue(); Chris@1: return features; Chris@1: } catch (FileNotFoundException e) { Chris@1: e.printStackTrace(); Chris@1: return null; Chris@1: } catch (IOException e) { Chris@1: e.printStackTrace(); Chris@1: return null; Chris@1: } catch (NumberFormatException e) { Chris@1: e.printStackTrace(); Chris@1: return null; Chris@1: } Chris@1: } // getFeatures() Chris@1: Chris@1: /** Reads a file of feature values, treated as an onset detection function, Chris@1: * and finds peaks, which are stored in onsetList and onsets. Chris@1: * @param fileName The file of feature values Chris@1: * @param hopTime The spacing of feature values in time Chris@1: */ Chris@2: void processFeatures(String fileName, double hopTime) { Chris@1: double hop = hopTime; Chris@1: double[] features = getFeatures(fileName); Chris@1: Peaks.normalise(features); Chris@1: LinkedList peaks = Peaks.findPeaks(features, (int)Math.round(0.06 / hop), 0.35, 0.84, true); Chris@1: onsets = new double[peaks.size()]; Chris@1: double[] y2 = new double[onsets.length]; Chris@1: Iterator it = peaks.iterator(); Chris@1: onsetList = new EventList(); Chris@1: double minSalience = Peaks.min(features); Chris@1: for (int i = 0; i < onsets.length; i++) { Chris@1: int index = it.next(); Chris@1: onsets[i] = index * hop; Chris@1: y2[i] = features[index]; Chris@1: Event e = BeatTrackDisplay.newBeat(onsets[i], 0); Chris@1: e.salience = features[index] - minSalience; Chris@1: onsetList.add(e); Chris@1: } Chris@1: } // processFeatures() Chris@1: Chris@1: /** Copies output of audio processing to the display panel. */ Chris@2: void setDisplay(BeatTrackDisplay btd) { Chris@1: int energy2[] = new int[totalFrames*energyOversampleFactor]; Chris@1: double time[] = new double[totalFrames*energyOversampleFactor]; Chris@1: for (int i = 0; i < totalFrames*energyOversampleFactor; i++) { Chris@1: energy2[i] = (int) (energy[i] * 4 * energyOversampleFactor); Chris@1: time[i] = i * hopTime / energyOversampleFactor; Chris@1: } Chris@1: btd.setMagnitudes(energy2); Chris@1: btd.setEnvTimes(time); Chris@1: btd.setSpectro(frames, totalFrames, hopTime, 0);//fftTime/hopTime); Chris@1: btd.setOnsets(onsets); Chris@1: btd.setOnsetList(onsetList); Chris@1: } // setDisplay() Chris@1: Chris@1: } // class AudioProcessor Chris@1: Chris@1: Chris@1: #endif