annotate BeatRootProcessor.h @ 10:1c1e98cd1b2e

Fixes so as to run and, in theory, return results without crashing -- still doesn't actually produce meaningful data though
author Chris Cannam
date Fri, 30 Sep 2011 23:08:42 +0100
parents 4f6626f9ffac
children 59520cd6abac
rev   line source
Chris@1 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@1 2
Chris@1 3 /*
Chris@3 4 Vamp feature extraction plugin for the BeatRoot beat tracker.
Chris@1 5
Chris@3 6 Centre for Digital Music, Queen Mary, University of London.
Chris@3 7 This file copyright 2011 Simon Dixon, Chris Cannam and QMUL.
Chris@1 8
Chris@3 9 This program is free software; you can redistribute it and/or
Chris@3 10 modify it under the terms of the GNU General Public License as
Chris@3 11 published by the Free Software Foundation; either version 2 of the
Chris@3 12 License, or (at your option) any later version. See the file
Chris@3 13 COPYING included with this distribution for more information.
Chris@1 14 */
Chris@1 15
Chris@1 16 #ifndef _BEATROOT_PROCESSOR_H_
Chris@1 17 #define _BEATROOT_PROCESSOR_H_
Chris@1 18
Chris@4 19 #include "Peaks.h"
Chris@6 20 #include "Event.h"
Chris@6 21 #include "BeatTracker.h"
Chris@4 22
Chris@2 23 #include <vector>
Chris@3 24 #include <cmath>
Chris@2 25
Chris@2 26 using std::vector;
Chris@2 27
Chris@1 28 class BeatRootProcessor
Chris@1 29 {
Chris@9 30 public:
Chris@9 31 int getFFTSize() const { return fftSize; }
Chris@9 32 int getHopSize() const { return hopSize; }
Chris@9 33
Chris@1 34 protected:
Chris@1 35 /** Sample rate of audio */
Chris@1 36 float sampleRate;
Chris@1 37
Chris@1 38 /** Spacing of audio frames (determines the amount of overlap or
Chris@1 39 * skip between frames). This value is expressed in
Chris@1 40 * seconds. (Default = 0.020s) */
Chris@1 41 double hopTime;
Chris@1 42
Chris@1 43 /** The approximate size of an FFT frame in seconds. (Default =
Chris@1 44 * 0.04644s). The value is adjusted so that <code>fftSize</code>
Chris@1 45 * is always power of 2. */
Chris@1 46 double fftTime;
Chris@1 47
Chris@1 48 /** Spacing of audio frames in samples (see <code>hopTime</code>) */
Chris@1 49 int hopSize;
Chris@1 50
Chris@1 51 /** The size of an FFT frame in samples (see <code>fftTime</code>) */
Chris@1 52 int fftSize;
Chris@1 53
Chris@1 54 /** Spectral flux onset detection function, indexed by frame. */
Chris@4 55 vector<double> spectralFlux;
Chris@1 56
Chris@1 57 /** A mapping function for mapping FFT bins to final frequency bins.
Chris@1 58 * The mapping is linear (1-1) until the resolution reaches 2 points per
Chris@1 59 * semitone, then logarithmic with a semitone resolution. e.g. for
Chris@1 60 * 44.1kHz sampling rate and fftSize of 2048 (46ms), bin spacing is
Chris@1 61 * 21.5Hz, which is mapped linearly for bins 0-34 (0 to 732Hz), and
Chris@1 62 * logarithmically for the remaining bins (midi notes 79 to 127, bins 35 to
Chris@1 63 * 83), where all energy above note 127 is mapped into the final bin. */
Chris@1 64 vector<int> freqMap;
Chris@1 65
Chris@1 66 /** The number of entries in <code>freqMap</code>. Note that the length of
Chris@1 67 * the array is greater, because its size is not known at creation time. */
Chris@1 68 int freqMapSize;
Chris@1 69
Chris@1 70 /** The magnitude spectrum of the most recent frame. Used for
Chris@1 71 * calculating the spectral flux. */
Chris@1 72 vector<double> prevFrame;
Chris@1 73
Chris@1 74 /** The estimated onset times from peak-picking the onset
Chris@1 75 * detection function(s). */
Chris@1 76 vector<double> onsets;
Chris@1 77
Chris@1 78 /** The estimated onset times and their saliences. */
Chris@6 79 EventList onsetList;
Chris@1 80
Chris@1 81 /** Flag for suppressing all standard output messages except results. */
Chris@2 82 static bool silent;
Chris@1 83
Chris@1 84 public:
Chris@1 85
Chris@1 86 /** Constructor: note that streams are not opened until the input
Chris@1 87 * file is set (see <code>setInputFile()</code>). */
Chris@8 88 BeatRootProcessor(float sr) :
Chris@8 89 sampleRate(sr) {
Chris@1 90 hopSize = 0;
Chris@1 91 fftSize = 0;
Chris@9 92 hopTime = 0.010;
Chris@9 93 fftTime = 0.04644;
Chris@9 94 hopSize = lrint(sampleRate * hopTime);
Chris@9 95 fftSize = lrint(pow(2, lrint( log(fftTime * sampleRate) / log(2))));
Chris@1 96 } // constructor
Chris@1 97
Chris@9 98 void reset() {
Chris@9 99 init();
Chris@9 100 }
Chris@9 101
Chris@10 102 /** Processes a frame of frequency-domain audio data by mapping
Chris@10 103 * the frequency bins into a part-linear part-logarithmic array,
Chris@10 104 * then computing the spectral flux then (optionally) normalising
Chris@10 105 * and calculating onsets.
Chris@10 106 */
Chris@10 107 void processFrame(const float *const *inputBuffers) {
Chris@10 108 double flux = 0;
Chris@10 109 for (int i = 0; i <= fftSize/2; i++) {
Chris@10 110 double mag = sqrt(inputBuffers[0][i*2] * inputBuffers[0][i*2] +
Chris@10 111 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
Chris@10 112 if (mag > prevFrame[i]) flux += mag - prevFrame[i];
Chris@10 113 prevFrame[i] = mag;
Chris@10 114 }
Chris@10 115
Chris@10 116 spectralFlux.push_back(flux);
Chris@10 117
Chris@10 118 } // processFrame()
Chris@10 119
Chris@10 120 /** Tracks beats once all frames have been processed by processFrame
Chris@10 121 */
Chris@10 122 EventList beatTrack() {
Chris@10 123
Chris@10 124 double hop = hopTime;
Chris@10 125 Peaks::normalise(spectralFlux);
Chris@10 126 vector<int> peaks = Peaks::findPeaks(spectralFlux, (int)lrint(0.06 / hop), 0.35, 0.84, true);
Chris@10 127 onsets.clear();
Chris@10 128 onsets.resize(peaks.size(), 0);
Chris@10 129 vector<int>::iterator it = peaks.begin();
Chris@10 130 onsetList.clear();
Chris@10 131 double minSalience = Peaks::min(spectralFlux);
Chris@10 132 for (int i = 0; i < onsets.size(); i++) {
Chris@10 133 int index = *it;
Chris@10 134 ++it;
Chris@10 135 onsets[i] = index * hop;
Chris@10 136 Event e = BeatTracker::newBeat(onsets[i], 0);
Chris@10 137 // if (debug)
Chris@10 138 // System.err.printf("Onset: %8.3f %8.3f %8.3f\n",
Chris@10 139 // onsets[i], energy[index], slope[index]);
Chris@10 140 // e.salience = slope[index]; // or combination of energy + slope??
Chris@10 141 // Note that salience must be non-negative or the beat tracking system fails!
Chris@10 142 e.salience = spectralFlux[index] - minSalience;
Chris@10 143 onsetList.push_back(e);
Chris@10 144 }
Chris@10 145
Chris@10 146 return BeatTracker::beatTrack(onsetList);
Chris@10 147
Chris@10 148 } // processFile()
Chris@10 149
Chris@2 150 protected:
Chris@3 151 /** Allocates memory for arrays, based on parameter settings */
Chris@3 152 void init() {
Chris@3 153 makeFreqMap(fftSize, sampleRate);
Chris@3 154 prevFrame.clear();
Chris@10 155 for (int i = 0; i <= fftSize/2; i++) prevFrame.push_back(0);
Chris@3 156 spectralFlux.clear();
Chris@3 157 } // init()
Chris@1 158
Chris@3 159 /** Creates a map of FFT frequency bins to comparison bins.
Chris@3 160 * Where the spacing of FFT bins is less than 0.5 semitones, the mapping is
Chris@3 161 * one to one. Where the spacing is greater than 0.5 semitones, the FFT
Chris@3 162 * energy is mapped into semitone-wide bins. No scaling is performed; that
Chris@3 163 * is the energy is summed into the comparison bins. See also
Chris@3 164 * processFrame()
Chris@3 165 */
Chris@3 166 void makeFreqMap(int fftSize, float sampleRate) {
Chris@3 167 freqMap.resize(fftSize/2+1);
Chris@3 168 double binWidth = sampleRate / fftSize;
Chris@3 169 int crossoverBin = (int)(2 / (pow(2, 1/12.0) - 1));
Chris@3 170 int crossoverMidi = (int)lrint(log(crossoverBin*binWidth/440)/
Chris@3 171 log(2) * 12 + 69);
Chris@3 172 int i = 0;
Chris@9 173 while (i <= crossoverBin && i <= fftSize/2)
Chris@3 174 freqMap[i++] = i;
Chris@3 175 while (i <= fftSize/2) {
Chris@3 176 double midi = log(i*binWidth/440) / log(2) * 12 + 69;
Chris@3 177 if (midi > 127)
Chris@3 178 midi = 127;
Chris@3 179 freqMap[i++] = crossoverBin + (int)lrint(midi) - crossoverMidi;
Chris@3 180 }
Chris@3 181 freqMapSize = freqMap[i-1] + 1;
Chris@3 182 } // makeFreqMap()
Chris@1 183
Chris@3 184 }; // class AudioProcessor
Chris@1 185
Chris@1 186
Chris@1 187 #endif