andrewm@0
|
1 /*
|
robert@269
|
2 ____ _____ _ _
|
robert@269
|
3 | __ )| ____| | / \
|
robert@269
|
4 | _ \| _| | | / _ \
|
robert@269
|
5 | |_) | |___| |___ / ___ \
|
robert@269
|
6 |____/|_____|_____/_/ \_\.io
|
robert@269
|
7
|
robert@269
|
8 */
|
robert@269
|
9
|
robert@269
|
10 /*
|
andrewm@0
|
11 *
|
robert@269
|
12 * Andrew McPherson and Victor Zappi
|
robert@269
|
13 * Queen Mary, University of London
|
andrewm@0
|
14 */
|
andrewm@0
|
15
|
robert@269
|
16 /**
|
robert@269
|
17 \example 3_analog_output
|
robert@269
|
18
|
robert@269
|
19 Fading LEDs
|
robert@269
|
20 -----------
|
robert@269
|
21
|
robert@269
|
22 This sketch uses a sine wave to drive the brightness of a series of LEDs
|
robert@269
|
23 connected to the eight analog out pins. Again you can see the nested `for` loop
|
robert@269
|
24 structure but this time for the analog output channels rather than the audio.
|
robert@269
|
25
|
robert@269
|
26 Within the first `for` loop in render we cycle through each frame in the analog
|
robert@269
|
27 output matrix. At each frame we then cycle through the analog output channels
|
robert@269
|
28 with another `for` loop and set the output voltage according to the phase of a
|
robert@269
|
29 sine tone that acts as an LFO. The analog output pins can provide a voltage of
|
robert@269
|
30 ~4.092V.
|
robert@269
|
31
|
robert@269
|
32 The output on each pin is set with `analogWriteFrame` within the `for` loop that
|
robert@269
|
33 cycles through the analog output channels. This needs to be provided with
|
robert@269
|
34 arguments as follows `analogWriteFrame(context, n, channel, out)`. Channel is
|
robert@269
|
35 where the you give the address of the analog output pin (in this case we cycle
|
robert@269
|
36 through each pin address in the for loop), out is the variable that holds the
|
robert@269
|
37 desired output (in this case set by the sine wave).
|
robert@269
|
38
|
robert@269
|
39 Notice that the phase of the brightness cycle for each led is different. This
|
robert@269
|
40 is achieved by updating a variable that stores a relative phase value. This
|
robert@269
|
41 variable is advanced by pi/4 (1/8 of a full rotation) for each channel giving
|
robert@269
|
42 each of the eight LEDs a different phase.
|
robert@269
|
43
|
robert@269
|
44 */
|
robert@269
|
45
|
andrewm@0
|
46
|
andrewm@56
|
47 #include <BeagleRT.h>
|
andrewm@56
|
48 #include <Utilities.h>
|
andrewm@0
|
49 #include <rtdk.h>
|
andrewm@0
|
50 #include <cmath>
|
andrewm@0
|
51
|
andrewm@0
|
52 // Set range for analog outputs designed for driving LEDs
|
andrewm@52
|
53 const float kMinimumAmplitude = (1.5 / 5.0);
|
andrewm@52
|
54 const float kAmplitudeRange = 1.0 - kMinimumAmplitude;
|
andrewm@0
|
55
|
andrewm@0
|
56 float gFrequency;
|
andrewm@0
|
57 float gPhase;
|
andrewm@0
|
58 float gInverseSampleRate;
|
andrewm@0
|
59
|
andrewm@56
|
60 // setup() is called once before the audio rendering starts.
|
andrewm@0
|
61 // Use it to perform any initialisation and allocation which is dependent
|
andrewm@0
|
62 // on the period size or sample rate.
|
andrewm@0
|
63 //
|
andrewm@0
|
64 // userData holds an opaque pointer to a data structure that was passed
|
andrewm@0
|
65 // in from the call to initAudio().
|
andrewm@0
|
66 //
|
andrewm@0
|
67 // Return true on success; returning false halts the program.
|
andrewm@0
|
68
|
andrewm@56
|
69 bool setup(BeagleRTContext *context, void *userData)
|
andrewm@0
|
70 {
|
andrewm@0
|
71 // Retrieve a parameter passed in from the initAudio() call
|
andrewm@0
|
72 gFrequency = *(float *)userData;
|
andrewm@0
|
73
|
andrewm@52
|
74 if(context->analogFrames == 0) {
|
andrewm@12
|
75 rt_printf("Error: this example needs the matrix enabled\n");
|
andrewm@0
|
76 return false;
|
andrewm@0
|
77 }
|
andrewm@0
|
78
|
andrewm@52
|
79 gInverseSampleRate = 1.0 / context->analogSampleRate;
|
andrewm@0
|
80 gPhase = 0.0;
|
andrewm@0
|
81
|
andrewm@0
|
82 return true;
|
andrewm@0
|
83 }
|
andrewm@0
|
84
|
andrewm@0
|
85 // render() is called regularly at the highest priority by the audio engine.
|
andrewm@0
|
86 // Input and output are given from the audio hardware and the other
|
andrewm@0
|
87 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
|
andrewm@0
|
88 // will be 0.
|
andrewm@0
|
89
|
andrewm@52
|
90 void render(BeagleRTContext *context, void *userData)
|
andrewm@0
|
91 {
|
andrewm@56
|
92 for(unsigned int n = 0; n < context->analogFrames; n++) {
|
andrewm@0
|
93 // Set LED to different phase for each matrix channel
|
andrewm@0
|
94 float relativePhase = 0.0;
|
andrewm@56
|
95 for(unsigned int channel = 0; channel < context->analogChannels; channel++) {
|
andrewm@0
|
96 float out = kMinimumAmplitude + kAmplitudeRange * 0.5f * (1.0f + sinf(gPhase + relativePhase));
|
andrewm@0
|
97
|
andrewm@52
|
98 analogWriteFrame(context, n, channel, out);
|
andrewm@0
|
99
|
andrewm@0
|
100 // Advance by pi/4 (1/8 of a full rotation) for each channel
|
andrewm@0
|
101 relativePhase += M_PI * 0.25;
|
andrewm@0
|
102 }
|
andrewm@0
|
103
|
andrewm@0
|
104 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
|
andrewm@0
|
105 if(gPhase > 2.0 * M_PI)
|
andrewm@0
|
106 gPhase -= 2.0 * M_PI;
|
andrewm@0
|
107 }
|
andrewm@0
|
108 }
|
andrewm@0
|
109
|
andrewm@56
|
110 // cleanup() is called once at the end, after the audio has stopped.
|
andrewm@56
|
111 // Release any resources that were allocated in setup().
|
andrewm@0
|
112
|
andrewm@56
|
113 void cleanup(BeagleRTContext *context, void *userData)
|
andrewm@0
|
114 {
|
andrewm@0
|
115
|
andrewm@0
|
116 }
|