mas01cr@266
|
1 #include "audioDB.h"
|
mas01cr@266
|
2
|
mas01cr@268
|
3 #include <gsl/gsl_sf.h>
|
mas01cr@268
|
4
|
mas01cr@276
|
5 static
|
mas01cr@273
|
6 double yfun(double d) {
|
mas01cr@268
|
7 return gsl_sf_log(d) - gsl_sf_psi(d);
|
mas01cr@268
|
8 }
|
mas01cr@276
|
9
|
mas01cr@276
|
10 static
|
mas01cr@273
|
11 double yinv(double y) {
|
mas01cr@268
|
12 double a = 1.0e-5;
|
mas01cr@268
|
13 double b = 1000.0;
|
mas01cr@268
|
14
|
mas01cr@268
|
15 double ay = yfun(a);
|
mas01cr@268
|
16 double by = yfun(b);
|
mas01cr@268
|
17
|
mas01cr@268
|
18 double c, cy;
|
mas01cr@268
|
19
|
mas01cr@276
|
20 /* FIXME: simple binary search; there's probably some clever solver
|
mas01cr@276
|
21 in gsl somewhere which is less sucky. */
|
mas01cr@268
|
22 while ((b - a) > 1.0e-5) {
|
mas01cr@268
|
23 c = (a + b) / 2;
|
mas01cr@268
|
24 cy = yfun(c);
|
mas01cr@268
|
25 if (cy > y) {
|
mas01cr@268
|
26 a = c;
|
mas01cr@268
|
27 ay = cy;
|
mas01cr@268
|
28 } else {
|
mas01cr@268
|
29 b = c;
|
mas01cr@268
|
30 by = cy;
|
mas01cr@268
|
31 }
|
mas01cr@268
|
32 }
|
mas01cr@268
|
33
|
mas01cr@268
|
34 return c;
|
mas01cr@268
|
35 }
|
mas01cr@268
|
36
|
mas01cr@266
|
37 unsigned audioDB::random_track(unsigned *propTable, unsigned total) {
|
mas01cr@266
|
38 /* FIXME: make this O(1) by using the alias-rejection method, or
|
mas01cr@266
|
39 some other sensible method of sampling from a discrete
|
mas01cr@266
|
40 distribution. */
|
mas01cr@266
|
41 /* FIXME: use a real random number generator, not random() */
|
mas01cr@266
|
42 double thing = random() / (double) RAND_MAX;
|
mas01cr@266
|
43 unsigned sofar = 0;
|
mas01cr@266
|
44 for (unsigned int i = 0; i < dbH->numFiles; i++) {
|
mas01cr@266
|
45 sofar += propTable[i];
|
mas01cr@266
|
46 if (thing < ((double) sofar / (double) total)) {
|
mas01cr@266
|
47 return i;
|
mas01cr@266
|
48 }
|
mas01cr@266
|
49 }
|
mas01cr@266
|
50 error("fell through in random_track()");
|
mas01cr@266
|
51
|
mas01cr@266
|
52 /* FIXME: decorate error's declaration so that this isn't necessary */
|
mas01cr@266
|
53 return 0;
|
mas01cr@266
|
54 }
|
mas01cr@266
|
55
|
mas01cr@266
|
56 void audioDB::sample(const char *dbName) {
|
mas01cr@266
|
57 initTables(dbName, 0);
|
mas01cr@266
|
58
|
mas01cr@271
|
59 /* FIXME: in Real Life we'll want to initialize the RNG using
|
mas01cr@271
|
60 /dev/random or the current time or something, like this:
|
mas01cr@271
|
61
|
mas01cr@271
|
62 unsigned int seed;
|
mas01cr@271
|
63 int fd = open("/dev/urandom", O_RDONLY);
|
mas01cr@271
|
64 read(fd, &seed, 4);
|
mas01cr@271
|
65
|
mas01cr@271
|
66 srandom(seed);
|
mas01cr@271
|
67 */
|
mas01cr@271
|
68
|
mas01cr@266
|
69 // build track offset table (FIXME: cut'n'pasted from query.cpp)
|
mas01cr@266
|
70 off_t *trackOffsetTable = new off_t[dbH->numFiles];
|
mas01cr@266
|
71 unsigned cumTrack=0;
|
mas01cr@266
|
72 for(unsigned int k = 0; k < dbH->numFiles; k++){
|
mas01cr@266
|
73 trackOffsetTable[k] = cumTrack;
|
mas01cr@266
|
74 cumTrack += trackTable[k] * dbH->dim;
|
mas01cr@266
|
75 }
|
mas01cr@266
|
76
|
mas01cr@266
|
77 unsigned *propTable = new unsigned[dbH->numFiles];
|
mas01cr@266
|
78 unsigned total = 0;
|
mas01cr@270
|
79 unsigned count = 0;
|
mas01cr@266
|
80
|
mas01cr@266
|
81 for (unsigned int i = 0; i < dbH->numFiles; i++) {
|
mas01cr@266
|
82 /* what kind of a stupid language doesn't have binary max(), let
|
mas01cr@266
|
83 alone nary? */
|
mas01cr@266
|
84 unsigned int prop = trackTable[i] - sequenceLength + 1;
|
mas01cr@266
|
85 prop = prop > 0 ? prop : 0;
|
mas01cr@270
|
86 if (prop > 0)
|
mas01cr@270
|
87 count++;
|
mas01cr@266
|
88 propTable[i] = prop;
|
mas01cr@266
|
89 total += prop;
|
mas01cr@266
|
90 }
|
mas01cr@266
|
91
|
mas01cr@266
|
92 if (total == 0) {
|
mas01cr@266
|
93 error("no sequences of this sequence length in the database", dbName);
|
mas01cr@266
|
94 }
|
mas01cr@266
|
95
|
mas01cr@266
|
96 unsigned int vlen = dbH->dim * sequenceLength;
|
mas01cr@266
|
97 double *v1 = new double[vlen];
|
mas01cr@266
|
98 double *v2 = new double[vlen];
|
mas01cr@266
|
99 double v1norm, v2norm, v1v2;
|
mas01cr@266
|
100
|
mas01cr@266
|
101 double sumdist = 0;
|
mas01cr@266
|
102 double sumlogdist = 0;
|
mas01cr@266
|
103
|
mas01cr@270
|
104 for (unsigned int i = 0; i < nsamples;) {
|
mas01cr@266
|
105 unsigned track1 = random_track(propTable, total);
|
mas01cr@266
|
106 unsigned track2 = random_track(propTable, total);
|
mas01cr@266
|
107
|
mas01cr@271
|
108 if(track1 == track2)
|
mas01cr@271
|
109 continue;
|
mas01cr@271
|
110
|
mas01cr@266
|
111 /* FIXME: this uses lower-order bits, which is OK on Linux but not
|
mas01cr@266
|
112 necessarily elsewhere. Again, use a real random number
|
mas01cr@266
|
113 generator */
|
mas01cr@266
|
114 unsigned i1 = random() % propTable[track1];
|
mas01cr@266
|
115 unsigned i2 = random() % propTable[track2];
|
mas01cr@266
|
116
|
mas01cr@266
|
117 VERB_LOG(1, "%d %d, %d %d | ", track1, i1, track2, i2);
|
mas01cr@266
|
118
|
mas01cr@266
|
119 /* FIXME: this seeking, reading and distance calculation should
|
mas01cr@266
|
120 share more code with the query loop */
|
mas01cr@266
|
121 lseek(dbfid, dbH->dataOffset + trackOffsetTable[track1] * sizeof(double) + i1 * dbH->dim * sizeof(double), SEEK_SET);
|
mas01cr@266
|
122 read(dbfid, v1, dbH->dim * sequenceLength * sizeof(double));
|
mas01cr@266
|
123
|
mas01cr@266
|
124 lseek(dbfid, dbH->dataOffset + trackOffsetTable[track2] * sizeof(double) + i2 * dbH->dim * sizeof(double), SEEK_SET);
|
mas01cr@266
|
125 read(dbfid, v2, dbH->dim * sequenceLength * sizeof(double));
|
mas01cr@266
|
126
|
mas01cr@266
|
127 v1norm = 0;
|
mas01cr@266
|
128 v2norm = 0;
|
mas01cr@266
|
129 v1v2 = 0;
|
mas01cr@266
|
130
|
mas01cr@266
|
131 for (unsigned int j = 0; j < vlen; j++) {
|
mas01cr@266
|
132 v1norm += v1[j]*v1[j];
|
mas01cr@266
|
133 v2norm += v2[j]*v2[j];
|
mas01cr@266
|
134 v1v2 += v1[j]*v2[j];
|
mas01cr@266
|
135 }
|
mas01cr@266
|
136
|
mas01cr@266
|
137 /* FIXME: we must deal with infinities better than this; there
|
mas01cr@266
|
138 could be all sorts of NaNs from arbitrary features. Best
|
mas01cr@266
|
139 include power thresholds or something... */
|
mas01cr@266
|
140 if(isfinite(v1norm) && isfinite(v2norm) && isfinite(v1v2)) {
|
mas01cr@266
|
141
|
mas01cr@266
|
142 VERB_LOG(1, "%f %f %f | ", v1norm, v2norm, v1v2);
|
mas01cr@266
|
143 /* assume normalizedDistance == true for now */
|
mas01cr@266
|
144 /* FIXME: not convinced that the statistics we calculated in
|
mas01cr@271
|
145 TASLP paper are technically valid for normalizedDistance */
|
mas01cr@271
|
146
|
mas01cr@269
|
147 double dist = 2 - 2 * v1v2 / sqrt(v1norm * v2norm);
|
mas01cr@271
|
148 // double dist = v1norm + v2norm - 2*v1v2;
|
mas01cr@271
|
149
|
mas01cr@266
|
150 VERB_LOG(1, "%f %f\n", dist, log(dist));
|
mas01cr@266
|
151 sumdist += dist;
|
mas01cr@266
|
152 sumlogdist += log(dist);
|
mas01cr@266
|
153 i++;
|
mas01cr@266
|
154 } else {
|
mas01cr@273
|
155 VERB_LOG(1, "infinity/NaN found: %f %f %f\n", v1norm, v2norm, v1v2);
|
mas01cr@266
|
156 }
|
mas01cr@266
|
157 }
|
mas01cr@266
|
158
|
mas01cr@270
|
159 /* FIXME: the mean isn't really what we should be reporting here */
|
mas01cr@270
|
160 unsigned meanN = total / count;
|
mas01cr@270
|
161
|
mas01cr@270
|
162 double sigma2 = sumdist / (sequenceLength * dbH->dim * nsamples);
|
mas01cr@270
|
163 double d = 2 * yinv(log(sumdist/nsamples) - sumlogdist/nsamples);
|
mas01cr@268
|
164
|
mas01cr@266
|
165 std::cout << "Summary statistics" << std::endl;
|
mas01cr@270
|
166 std::cout << "number of samples: " << nsamples << std::endl;
|
mas01cr@266
|
167 std::cout << "sum of distances (S): " << sumdist << std::endl;
|
mas01cr@266
|
168 std::cout << "sum of log distances (L): " << sumlogdist << std::endl;
|
mas01cr@271
|
169
|
mas01cr@271
|
170 /* FIXME: we'll also want some more summary statistics based on
|
mas01cr@271
|
171 propTable, for the minimum-of-X estimate */
|
mas01cr@270
|
172 std::cout << "mean number of applicable sequences (N): " << meanN << std::endl;
|
mas01cr@268
|
173 std::cout << std::endl;
|
mas01cr@268
|
174 std::cout << "Estimated parameters" << std::endl;
|
mas01cr@271
|
175 std::cout << "sigma^2: " << sigma2 << "; ";
|
mas01cr@271
|
176 std::cout << "Msigma^2: " << sumdist / nsamples << std::endl;
|
mas01cr@268
|
177 std::cout << "d: " << d << std::endl;
|
mas01cr@270
|
178
|
mas01cr@270
|
179 double logw = (2 / d) * gsl_sf_log(-gsl_sf_log(0.99));
|
mas01cr@270
|
180 double logxthresh = gsl_sf_log(sumdist / nsamples) + logw
|
mas01cr@270
|
181 - (2 / d) * gsl_sf_log(meanN)
|
mas01cr@270
|
182 - gsl_sf_log(d/2)
|
mas01cr@270
|
183 - (2 / d) * gsl_sf_log(2 / d)
|
mas01cr@270
|
184 + (2 / d) * gsl_sf_lngamma(d / 2);
|
mas01cr@270
|
185
|
mas01cr@270
|
186 std::cout << "track xthresh: " << exp(logxthresh) << std::endl;
|
mas01cr@266
|
187
|
mas01cr@266
|
188 delete[] propTable;
|
mas01cr@266
|
189 delete[] v1;
|
mas01cr@266
|
190 delete[] v2;
|
mas01cr@266
|
191 }
|