annotate sample.cpp @ 269:dcbb30790b30 sampling

Whoops. Fix EXTREMELY EMBARRASSING bug in distance computation.
author mas01cr
date Mon, 16 Jun 2008 11:57:25 +0000
parents 30a2a45f2b70
children 9636040ff503
rev   line source
mas01cr@266 1 #include "audioDB.h"
mas01cr@266 2
mas01cr@268 3 #include <gsl/gsl_sf.h>
mas01cr@268 4
mas01cr@268 5 static double yfun(double d) {
mas01cr@268 6 return gsl_sf_log(d) - gsl_sf_psi(d);
mas01cr@268 7 }
mas01cr@268 8
mas01cr@268 9 static double yinv(double y) {
mas01cr@268 10 double a = 1.0e-5;
mas01cr@268 11 double b = 1000.0;
mas01cr@268 12
mas01cr@268 13 double ay = yfun(a);
mas01cr@268 14 double by = yfun(b);
mas01cr@268 15
mas01cr@268 16 double c, cy;
mas01cr@268 17
mas01cr@268 18 /* FIXME: simple binary search */
mas01cr@268 19 while ((b - a) > 1.0e-5) {
mas01cr@268 20 c = (a + b) / 2;
mas01cr@268 21 cy = yfun(c);
mas01cr@268 22 if (cy > y) {
mas01cr@268 23 a = c;
mas01cr@268 24 ay = cy;
mas01cr@268 25 } else {
mas01cr@268 26 b = c;
mas01cr@268 27 by = cy;
mas01cr@268 28 }
mas01cr@268 29 }
mas01cr@268 30
mas01cr@268 31 return c;
mas01cr@268 32 }
mas01cr@268 33
mas01cr@266 34 unsigned audioDB::random_track(unsigned *propTable, unsigned total) {
mas01cr@266 35 /* FIXME: make this O(1) by using the alias-rejection method, or
mas01cr@266 36 some other sensible method of sampling from a discrete
mas01cr@266 37 distribution. */
mas01cr@266 38 /* FIXME: use a real random number generator, not random() */
mas01cr@266 39 double thing = random() / (double) RAND_MAX;
mas01cr@266 40 unsigned sofar = 0;
mas01cr@266 41 for (unsigned int i = 0; i < dbH->numFiles; i++) {
mas01cr@266 42 sofar += propTable[i];
mas01cr@266 43 if (thing < ((double) sofar / (double) total)) {
mas01cr@266 44 return i;
mas01cr@266 45 }
mas01cr@266 46 }
mas01cr@266 47 error("fell through in random_track()");
mas01cr@266 48
mas01cr@266 49 /* FIXME: decorate error's declaration so that this isn't necessary */
mas01cr@266 50 return 0;
mas01cr@266 51 }
mas01cr@266 52
mas01cr@266 53 void audioDB::sample(const char *dbName) {
mas01cr@266 54 initTables(dbName, 0);
mas01cr@266 55
mas01cr@266 56 // build track offset table (FIXME: cut'n'pasted from query.cpp)
mas01cr@266 57 off_t *trackOffsetTable = new off_t[dbH->numFiles];
mas01cr@266 58 unsigned cumTrack=0;
mas01cr@266 59 for(unsigned int k = 0; k < dbH->numFiles; k++){
mas01cr@266 60 trackOffsetTable[k] = cumTrack;
mas01cr@266 61 cumTrack += trackTable[k] * dbH->dim;
mas01cr@266 62 }
mas01cr@266 63
mas01cr@266 64 unsigned *propTable = new unsigned[dbH->numFiles];
mas01cr@266 65 unsigned total = 0;
mas01cr@266 66
mas01cr@266 67 for (unsigned int i = 0; i < dbH->numFiles; i++) {
mas01cr@266 68 /* what kind of a stupid language doesn't have binary max(), let
mas01cr@266 69 alone nary? */
mas01cr@266 70 unsigned int prop = trackTable[i] - sequenceLength + 1;
mas01cr@266 71 prop = prop > 0 ? prop : 0;
mas01cr@266 72 propTable[i] = prop;
mas01cr@266 73 total += prop;
mas01cr@266 74 }
mas01cr@266 75
mas01cr@266 76 if (total == 0) {
mas01cr@266 77 error("no sequences of this sequence length in the database", dbName);
mas01cr@266 78 }
mas01cr@266 79
mas01cr@266 80 unsigned int vlen = dbH->dim * sequenceLength;
mas01cr@266 81 double *v1 = new double[vlen];
mas01cr@266 82 double *v2 = new double[vlen];
mas01cr@266 83 double v1norm, v2norm, v1v2;
mas01cr@266 84
mas01cr@266 85 double sumdist = 0;
mas01cr@266 86 double sumlogdist = 0;
mas01cr@266 87
mas01cr@266 88 /* 1037 samples for now */
mas01cr@266 89 for (unsigned int i = 0; i < 1037;) {
mas01cr@266 90 /* FIXME: in Real Life we'll want to initialize the RNG using
mas01cr@266 91 /dev/random or the current time or something. */
mas01cr@266 92 unsigned track1 = random_track(propTable, total);
mas01cr@266 93 unsigned track2 = random_track(propTable, total);
mas01cr@266 94
mas01cr@266 95 /* FIXME: this uses lower-order bits, which is OK on Linux but not
mas01cr@266 96 necessarily elsewhere. Again, use a real random number
mas01cr@266 97 generator */
mas01cr@266 98 unsigned i1 = random() % propTable[track1];
mas01cr@266 99 unsigned i2 = random() % propTable[track2];
mas01cr@266 100
mas01cr@266 101 VERB_LOG(1, "%d %d, %d %d | ", track1, i1, track2, i2);
mas01cr@266 102
mas01cr@266 103 /* FIXME: this seeking, reading and distance calculation should
mas01cr@266 104 share more code with the query loop */
mas01cr@266 105 lseek(dbfid, dbH->dataOffset + trackOffsetTable[track1] * sizeof(double) + i1 * dbH->dim * sizeof(double), SEEK_SET);
mas01cr@266 106 read(dbfid, v1, dbH->dim * sequenceLength * sizeof(double));
mas01cr@266 107
mas01cr@266 108 lseek(dbfid, dbH->dataOffset + trackOffsetTable[track2] * sizeof(double) + i2 * dbH->dim * sizeof(double), SEEK_SET);
mas01cr@266 109 read(dbfid, v2, dbH->dim * sequenceLength * sizeof(double));
mas01cr@266 110
mas01cr@266 111 v1norm = 0;
mas01cr@266 112 v2norm = 0;
mas01cr@266 113 v1v2 = 0;
mas01cr@266 114
mas01cr@266 115 for (unsigned int j = 0; j < vlen; j++) {
mas01cr@266 116 v1norm += v1[j]*v1[j];
mas01cr@266 117 v2norm += v2[j]*v2[j];
mas01cr@266 118 v1v2 += v1[j]*v2[j];
mas01cr@266 119 }
mas01cr@266 120
mas01cr@266 121 /* FIXME: we must deal with infinities better than this; there
mas01cr@266 122 could be all sorts of NaNs from arbitrary features. Best
mas01cr@266 123 include power thresholds or something... */
mas01cr@266 124 if(isfinite(v1norm) && isfinite(v2norm) && isfinite(v1v2)) {
mas01cr@266 125
mas01cr@266 126 VERB_LOG(1, "%f %f %f | ", v1norm, v2norm, v1v2);
mas01cr@266 127 /* assume normalizedDistance == true for now */
mas01cr@266 128 /* FIXME: not convinced that the statistics we calculated in
mas01cr@266 129 TASLP paper are valid for normalizedDistance */
mas01cr@269 130 double dist = 2 - 2 * v1v2 / sqrt(v1norm * v2norm);
mas01cr@266 131 VERB_LOG(1, "%f %f\n", dist, log(dist));
mas01cr@266 132 sumdist += dist;
mas01cr@266 133 sumlogdist += log(dist);
mas01cr@266 134 i++;
mas01cr@266 135 } else {
mas01cr@266 136 VERB_LOG(1, "infinity found: %f %f %f\n", v1norm, v2norm, v1v2);
mas01cr@266 137 }
mas01cr@266 138 }
mas01cr@266 139
mas01cr@268 140 double sigma2 = (sumdist / (sequenceLength * dbH->dim * 1037));
mas01cr@268 141 double d = 2 * yinv(log(sumdist/1037) - sumlogdist/1037);
mas01cr@268 142
mas01cr@266 143 std::cout << "Summary statistics" << std::endl;
mas01cr@266 144 std::cout << "number of samples: " << 1037 << std::endl;
mas01cr@266 145 std::cout << "sum of distances (S): " << sumdist << std::endl;
mas01cr@266 146 std::cout << "sum of log distances (L): " << sumlogdist << std::endl;
mas01cr@268 147 std::cout << std::endl;
mas01cr@268 148 std::cout << "Estimated parameters" << std::endl;
mas01cr@268 149 std::cout << "sigma^2: " << sigma2 << std::endl;
mas01cr@268 150 std::cout << "d: " << d << std::endl;
mas01cr@268 151 std::cout << "check: " << yfun(d/2) << std::endl;
mas01cr@266 152
mas01cr@266 153 /* FIXME: we'll also want some summary statistics based on
mas01cr@266 154 propTable, for the minimum-of-X estimate */
mas01cr@266 155
mas01cr@266 156 delete[] propTable;
mas01cr@266 157 delete[] v1;
mas01cr@266 158 delete[] v2;
mas01cr@266 159 }