Mercurial > hg > aimc
view trunk/C++/CAR.C @ 706:f8e90b5d85fd tip
Delete CARFAC code from this repository.
It has been moved to https://github.com/google/carfac
Please email me with your github username to get access.
I've also created a new mailing list to discuss CARFAC development:
https://groups.google.com/forum/#!forum/carfac-dev
author | ronw@google.com |
---|---|
date | Thu, 18 Jul 2013 20:56:51 +0000 |
parents | 33c6f1921171 |
children |
line wrap: on
line source
// Author Matt Flax <flatmax@> // // This C++ file is part of an implementation of Lyon's cochlear model: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" // to supplement Lyon's upcoming book "Human and Machine Hearing" // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** \author {Matt Flax <flatmax\@>} \date 2013.02.08 */ #include "CAR.H" CAR::CAR() { //ctor } CAR::~CAR() { //dtor } void CAR::designFilters(FP_TYPE fs, int n_ch) { // don't really need these zero arrays, but it's a clue to what fields // and types are need in ohter language implementations: coeff.r1_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1); // resize and zero coeff.a0_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1); coeff.c0_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1); coeff.h_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1); coeff.g0_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1); // zr_coeffs is not zeroed ... perhaps it should be ? // zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a), // and that a is here 1 / (1+f) where h = f*c. // solve for f: 1/zero_ratio^2 = 1 / (1+f) // zero_ratio^2 = 1+f => f = zero_ratio^2 - 1 FP_TYPE f = pow(param.zero_ratio,2.) - 1.; // nominally 1 for half-octave // Make pole positions, s and c coeffs, h and g coeffs, etc., // which mostly depend on the pole angle theta: Array<FP_TYPE, Dynamic, 1> theta = pole_freqs * (2. * M_PI / fs); // undamped coupled-form coefficients: coeff.c0_coeffs = theta.sin(); coeff.a0_coeffs = theta.cos(); // different possible interpretations for min-damping r: // r = exp(-theta * CF_CAR_params.min_zeta). // Compress theta to give somewhat higher Q at highest thetas: FP_TYPE ff = param.high_f_damping_compression; // 0 to 1 typ. 0.5 Array<FP_TYPE, Dynamic,1> x = theta/M_PI; coeff.zr_coeffs = M_PI * (x - ff * x.pow(3.)); // when ff is 0, this is just theta, // and when ff is 1 it goes to zero at theta = pi. coeff.r1_coeffs = (1. - coeff.zr_coeffs.array() * param.max_zeta); // "r1" for the max-damping condition // Increase the min damping where channels are spaced out more, by pulling // 25% of the way toward ERB_Hz/pole_freqs (close to 0.1 at high f) Array<FP_TYPE, Dynamic, 1> min_zetas = param.min_zeta + 0.25*(PsychoAcoustics::Hz2ERB(pole_freqs, param.ERB_break_freq, param.ERB_Q).array() / pole_freqs - param.min_zeta); coeff.zr_coeffs = coeff.zr_coeffs.array() * (param.max_zeta - min_zetas); // how r relates to undamping // the zeros follow via the h_coeffs coeff.h_coeffs = coeff.c0_coeffs * f; // for unity gain at min damping, radius r; only used in CARFAC_Init: Array<FP_TYPE, Dynamic,1> relative_undamping(n_ch, 1); relative_undamping=Array<FP_TYPE, Dynamic, 1>::Zero(n_ch, 1).cos(); // this function needs to take CAR_coeffs even if we haven't finished // constucting it by putting in the g0_coeffs: coeff.g0_coeffs = stageG(relative_undamping); } Array<FP_TYPE, Dynamic, 1> CAR::stageG(Array<FP_TYPE, Dynamic, 1> &relative_undamping) { // at max damping Array<FP_TYPE, Dynamic, 1> r = coeff.r1_coeffs.array() + coeff.zr_coeffs.array() * relative_undamping; return (1. - 2.*r*coeff.a0_coeffs.array() + r.pow(2.)) / (1. - 2.*r*coeff.a0_coeffs.array() + coeff.h_coeffs.array()*r*coeff.c0_coeffs.array() + pow(r,2.)); }