annotate trunk/C++/CAR.C @ 706:f8e90b5d85fd tip

Delete CARFAC code from this repository. It has been moved to https://github.com/google/carfac Please email me with your github username to get access. I've also created a new mailing list to discuss CARFAC development: https://groups.google.com/forum/#!forum/carfac-dev
author ronw@google.com
date Thu, 18 Jul 2013 20:56:51 +0000
parents 33c6f1921171
children
rev   line source
flatmax@674 1
flatmax@598 2 // Author Matt Flax <flatmax@>
flatmax@597 3 //
flatmax@597 4 // This C++ file is part of an implementation of Lyon's cochlear model:
flatmax@597 5 // "Cascade of Asymmetric Resonators with Fast-Acting Compression"
flatmax@597 6 // to supplement Lyon's upcoming book "Human and Machine Hearing"
flatmax@597 7 //
flatmax@597 8 // Licensed under the Apache License, Version 2.0 (the "License");
flatmax@597 9 // you may not use this file except in compliance with the License.
flatmax@597 10 // You may obtain a copy of the License at
flatmax@597 11 //
flatmax@597 12 // http://www.apache.org/licenses/LICENSE-2.0
flatmax@597 13 //
flatmax@597 14 // Unless required by applicable law or agreed to in writing, software
flatmax@597 15 // distributed under the License is distributed on an "AS IS" BASIS,
flatmax@597 16 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
flatmax@597 17 // See the License for the specific language governing permissions and
flatmax@597 18 // limitations under the License.
flatmax@597 19 /**
flatmax@597 20 \author {Matt Flax <flatmax\@>}
flatmax@597 21 \date 2013.02.08
flatmax@597 22 */
flatmax@597 23
flatmax@597 24 #include "CAR.H"
flatmax@597 25
flatmax@597 26 CAR::CAR() {
flatmax@597 27 //ctor
flatmax@597 28 }
flatmax@597 29
flatmax@597 30 CAR::~CAR() {
flatmax@597 31 //dtor
flatmax@597 32 }
flatmax@598 33
flatmax@598 34 void CAR::designFilters(FP_TYPE fs, int n_ch) {
flatmax@598 35 // don't really need these zero arrays, but it's a clue to what fields
flatmax@598 36 // and types are need in ohter language implementations:
flatmax@600 37 coeff.r1_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1); // resize and zero
flatmax@600 38 coeff.a0_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1);
flatmax@600 39 coeff.c0_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1);
flatmax@600 40 coeff.h_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1);
flatmax@600 41 coeff.g0_coeffs=Matrix<FP_TYPE, Dynamic, 1>::Zero(n_ch,1);
flatmax@598 42 // zr_coeffs is not zeroed ... perhaps it should be ?
flatmax@598 43
flatmax@598 44 // zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
flatmax@598 45 // and that a is here 1 / (1+f) where h = f*c.
flatmax@598 46 // solve for f: 1/zero_ratio^2 = 1 / (1+f)
flatmax@598 47 // zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
flatmax@598 48 FP_TYPE f = pow(param.zero_ratio,2.) - 1.; // nominally 1 for half-octave
flatmax@598 49
flatmax@598 50 // Make pole positions, s and c coeffs, h and g coeffs, etc.,
flatmax@598 51 // which mostly depend on the pole angle theta:
flatmax@598 52 Array<FP_TYPE, Dynamic, 1> theta = pole_freqs * (2. * M_PI / fs);
flatmax@598 53
flatmax@598 54
flatmax@598 55 // undamped coupled-form coefficients:
flatmax@598 56 coeff.c0_coeffs = theta.sin();
flatmax@598 57 coeff.a0_coeffs = theta.cos();
flatmax@598 58
flatmax@598 59 // different possible interpretations for min-damping r:
flatmax@598 60 // r = exp(-theta * CF_CAR_params.min_zeta).
flatmax@598 61 // Compress theta to give somewhat higher Q at highest thetas:
flatmax@598 62 FP_TYPE ff = param.high_f_damping_compression; // 0 to 1 typ. 0.5
flatmax@598 63 Array<FP_TYPE, Dynamic,1> x = theta/M_PI;
flatmax@598 64
flatmax@598 65 coeff.zr_coeffs = M_PI * (x - ff * x.pow(3.)); // when ff is 0, this is just theta,
flatmax@598 66 // and when ff is 1 it goes to zero at theta = pi.
flatmax@598 67 coeff.r1_coeffs = (1. - coeff.zr_coeffs.array() * param.max_zeta); // "r1" for the max-damping condition
flatmax@598 68
flatmax@598 69 // Increase the min damping where channels are spaced out more, by pulling
flatmax@598 70 // 25% of the way toward ERB_Hz/pole_freqs (close to 0.1 at high f)
flatmax@598 71 Array<FP_TYPE, Dynamic, 1> min_zetas = param.min_zeta + 0.25*(PsychoAcoustics::Hz2ERB(pole_freqs, param.ERB_break_freq, param.ERB_Q).array() / pole_freqs - param.min_zeta);
flatmax@598 72 coeff.zr_coeffs = coeff.zr_coeffs.array() * (param.max_zeta - min_zetas); // how r relates to undamping
flatmax@598 73
flatmax@598 74 // the zeros follow via the h_coeffs
flatmax@598 75 coeff.h_coeffs = coeff.c0_coeffs * f;
flatmax@598 76
flatmax@598 77 // for unity gain at min damping, radius r; only used in CARFAC_Init:
flatmax@598 78 Array<FP_TYPE, Dynamic,1> relative_undamping(n_ch, 1);
flatmax@600 79 relative_undamping=Array<FP_TYPE, Dynamic, 1>::Zero(n_ch, 1).cos();
flatmax@598 80
flatmax@598 81 // this function needs to take CAR_coeffs even if we haven't finished
flatmax@598 82 // constucting it by putting in the g0_coeffs:
flatmax@598 83 coeff.g0_coeffs = stageG(relative_undamping);
flatmax@598 84 }
flatmax@598 85
flatmax@598 86 Array<FP_TYPE, Dynamic, 1> CAR::stageG(Array<FP_TYPE, Dynamic, 1> &relative_undamping) {
flatmax@598 87 // at max damping
flatmax@598 88 Array<FP_TYPE, Dynamic, 1> r = coeff.r1_coeffs.array() + coeff.zr_coeffs.array() * relative_undamping;
flatmax@598 89 return (1. - 2.*r*coeff.a0_coeffs.array() + r.pow(2.)) / (1. - 2.*r*coeff.a0_coeffs.array() + coeff.h_coeffs.array()*r*coeff.c0_coeffs.array() + pow(r,2.));
flatmax@598 90 }