Mercurial > hg > aimc
view src/Modules/BMM/ModuleGammatone_test.py @ 5:3c782dec2fc0
- Ported over HTK file output
- Added some more meat to the Slaney IIR gammatone implementation
- Ported over the AIM-MAT sf2003 parabola strobe algorithm
- Finished making the SAI implementation compile
- Ported over the strobe list class (now uses STL deques internally)
author | tomwalters |
---|---|
date | Thu, 18 Feb 2010 16:55:40 +0000 |
parents | |
children | 2a5354042241 |
line wrap: on
line source
#!/usr/bin/env python # encoding: utf-8 # # AIM-C: A C++ implementation of the Auditory Image Model # http://www.acousticscale.org/AIMC # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ ModuleGammatone_test.py Created by Thomas Walters on 2010-02-15. Copyright 2010 Thomas Walters <tom@acousticscale.org> Test for the Slaney IIR gammatone. """ import aimc from scipy import io def main(): data_file = "src/Modules/BMM/testdata/gammatone.mat" data = io.loadmat(data_file) # The margin of error allowed between the returned values from AIM-C and # the stored MATLAB values. epsilon = 0.000001; input_wave = data["input_wave"] sample_rate = data["sample_rate"] centre_frequencies = data["centre_frequencies"] expected_output = data["expected_output"] (channel_count, buffer_length, frame_count) = expected_output.shape input_sig = aimc.SignalBank() input_sig.Initialize(1, buffer_length, 44100) parameters = aimc.Parameters() mod_gt = aimc.ModuleGammatone(parameters) mod_gt.Initialize(input_sig) correct_count = 0; incorrect_count = 0; for p in range(0, profile_count): profile = given_profiles[p] features = matlab_features[p] for i in range(0, channel_count): profile_sig.set_sample(i, 0, profile[i]) mod_gauss.Process(profile_sig) out_sig = mod_gauss.GetOutputBank() error = False; for j in range(0, out_sig.channel_count()): if (abs(out_sig.sample(j, 0) - features[j]) > epsilon): error = True; incorrect_count += 1; else: correct_count += 1; if error: print("Mismatch at profile %d" % (p)) print("AIM-C values: %f %f %f %f" % (out_sig.sample(0, 0), out_sig.sample(1, 0), out_sig.sample(2, 0), out_sig.sample(3, 0))) print("MATLAB values: %f %f %f %f" % (features[0], features[1], features[2], features[3])) print("") percent_correct = 100 * correct_count / (correct_count + incorrect_count) print("Total correct: %f percent" % (percent_correct)) if percent_correct == 100: print("=== TEST PASSED ===") else: print("=== TEST FAILED! ===") pass if __name__ == '__main__': main()