view src/Modules/BMM/ModuleGammatone_test.py @ 16:2a5354042241

-Updated the Slaney IIR gammatone to use a cascase of four second-order filters as per the implementtion in Slaney's auditory toolbox. This is more numerically stable at high sample rates and low centre frequencies.
author tomwalters
date Sat, 20 Feb 2010 17:56:40 +0000
parents 3c782dec2fc0
children c5f5e9569863
line wrap: on
line source
#!/usr/bin/env python
# encoding: utf-8
#
# AIM-C: A C++ implementation of the Auditory Image Model
# http://www.acousticscale.org/AIMC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""
ModuleGammatone_test.py

Created by Thomas Walters on 2010-02-15.
Copyright 2010 Thomas Walters <tom@acousticscale.org>
Test for the Slaney IIR gammatone.
"""

import aimc
from scipy import io
import wave
import scipy

def main():
  data_file = "src/Modules/BMM/testdata/gammatone.mat"
  data = io.loadmat(data_file)
  
  # The margin of error allowed between the returned values from AIM-C and
  # the stored MATLAB values.
  epsilon = 0.000001;
  
  input_wave = data["input_wave"]
  sample_rate = data["sample_rate"]
  centre_frequencies = data["centre_frequencies"]
  expected_output = data["expected_output"]
  
  (channel_count, frame_count) = expected_output.shape
  buffer_length = 20000;
  
  input_sig = aimc.SignalBank()
  input_sig.Initialize(1, buffer_length, 48000)
  parameters = aimc.Parameters()
  parameters.Load("src/Modules/BMM/testdata/gammatone.cfg")
  mod_gt = aimc.ModuleGammatone(parameters)
  mod_gt.Initialize(input_sig)
  
  correct_count = 0;
  incorrect_count  = 0;
  
  out = scipy.zeros((channel_count, buffer_length))
  
  cfs = scipy.zeros((channel_count))

  for i in range(0, buffer_length):
    input_sig.set_sample(0, i, input_wave[i][0])
  mod_gt.Process(input_sig)
  out_sig = mod_gt.GetOutputBank()
  for ch in range(0, out_sig.channel_count()):
    cfs[ch] = out_sig.centre_frequency(ch);
    for i in range(0, buffer_length):  
      out[ch, i] = out_sig.sample(ch, i)
  
  outmat = dict(filterbank_out=out, centre_frequencies_out=cfs)
  io.savemat("src/Modules/BMM/testdata/out_v2.mat", outmat)

  pass


if __name__ == '__main__':
  main()