Mercurial > hg > aimc
view src/Modules/BMM/ModuleGammatone_test.py @ 16:2a5354042241
-Updated the Slaney IIR gammatone to use a cascase of four second-order filters as per the implementtion in Slaney's auditory toolbox. This is more numerically stable at high sample rates and low centre frequencies.
author | tomwalters |
---|---|
date | Sat, 20 Feb 2010 17:56:40 +0000 |
parents | 3c782dec2fc0 |
children | c5f5e9569863 |
line wrap: on
line source
#!/usr/bin/env python # encoding: utf-8 # # AIM-C: A C++ implementation of the Auditory Image Model # http://www.acousticscale.org/AIMC # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ ModuleGammatone_test.py Created by Thomas Walters on 2010-02-15. Copyright 2010 Thomas Walters <tom@acousticscale.org> Test for the Slaney IIR gammatone. """ import aimc from scipy import io import wave import scipy def main(): data_file = "src/Modules/BMM/testdata/gammatone.mat" data = io.loadmat(data_file) # The margin of error allowed between the returned values from AIM-C and # the stored MATLAB values. epsilon = 0.000001; input_wave = data["input_wave"] sample_rate = data["sample_rate"] centre_frequencies = data["centre_frequencies"] expected_output = data["expected_output"] (channel_count, frame_count) = expected_output.shape buffer_length = 20000; input_sig = aimc.SignalBank() input_sig.Initialize(1, buffer_length, 48000) parameters = aimc.Parameters() parameters.Load("src/Modules/BMM/testdata/gammatone.cfg") mod_gt = aimc.ModuleGammatone(parameters) mod_gt.Initialize(input_sig) correct_count = 0; incorrect_count = 0; out = scipy.zeros((channel_count, buffer_length)) cfs = scipy.zeros((channel_count)) for i in range(0, buffer_length): input_sig.set_sample(0, i, input_wave[i][0]) mod_gt.Process(input_sig) out_sig = mod_gt.GetOutputBank() for ch in range(0, out_sig.channel_count()): cfs[ch] = out_sig.centre_frequency(ch); for i in range(0, buffer_length): out[ch, i] = out_sig.sample(ch, i) outmat = dict(filterbank_out=out, centre_frequencies_out=cfs) io.savemat("src/Modules/BMM/testdata/out_v2.mat", outmat) pass if __name__ == '__main__': main()